
Metadata-Augmented Neural Networks for Cross-Location Solar
Irradiation Prediction from Satellite Images

Kuan-Ying Lee
r03922165@ntu.edu.tw

National Taiwan University
thingnario Inc.

Hsin-Fu Huang
h@thingnario.com

thingnario Inc.

Hung-Yueh Chiang
r05922005@ntu.edu.tw

National Taiwan University

Hu-Cheng Lee
r05922174@ntu.edu.tw

National Taiwan University

Winston H. Hsu
whsu@ntu.edu.tw

National Taiwan University

Wen-Chin Chen
wcchen@csie.ntu.edu.tw

National Taiwan University

ABSTRACT
Photovoltaics (PV) energy has witnessed a rapid growth in the
passing years [13], raising the importance of monitoring the ef-
ficiency of PV generation. Monitoring can be based on measuring
the ratio of real to optimal production in a period of time. Optimal
production is derived from solar irradiation1 that conventionally
referred from preset pyranometers. In this work, we proposed to
estimate solar irradiation in a time period through processing a
series of satellite images (See Fig. 1). With a novel fusion method
of important single-valued metadata (Sun position) and an autoen-
coder to leaverage the spatiotemporal recurrence of satellite im-
ages, our method could reliably provide irradiation measurements
in scenarios where pyranometers are unavailable (e.g. arbitrary lo-
cation) or malfunction (e.g, dust, miscalibration). Our method per-
formed on par with the state-of-the-art meteorological model and
predictions closely aligned with ground truths from meticulously
maintained pyranometers. Moreover, the Mean Absolute Percent
Error (MAPE) is 25% lower than that of Solargis, a commercialized
solar data provider designated by The World Bank Group.
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Figure 1:We attempt to leverage the global coverage of satel-
lite images to achieve cross-location irradiation prediction,
which is widely used in efficiency monitoring and PV site
selection.
We observed the generality of Sun position and proposed a novel
fusion method between images and metadata. Hence, our model
could be applied on a much broader range while only trained on a

small area. [Best viewed in color.]

1 INTRODUCTION
PV grew the fastest among renewable energy, with a growth rate
over 50% in 2017 and contributed for almost half of the net addi-
tion in renewable energy [4]. PV installation is projected to grow
exponentially to 400 GW by 2030, over four times the number in
2016 [10]. This uprising trend makes monitoring of PV generation
efficiency more and more critical [20].

Operators often use Performance Ratio (PR) as the primary met-
ric for efficiency evaluation. PR is defined as the ratio between
the actual and the theoretical energy outputs, which is directly af-
fected by solar irradiance. Practitioners often resort to pyranome-
ters for solar irradiance. Yet, several issues exist concerning pyra-
nometers.

To begin with, Pyranometer installment could be costly. The
price starts from $800 for a modest-quality all the way up to $5000
for a highest-quality pyranometer2. In addition, pyranometers are
affected by solar dome effect and dusts, which necessitates reg-
ular cleaning [11, 14]. On top of that, pyranometers require re-
calibration from time to time [9]. Also, during site selection for
new solar plants, there are no preset pyranometers. Hence, one
could often only refer to observatories nearby for annual irradia-
tion. Such measurements often seriously deviate from the ground

2Reference from Omni Instrument. https://www.omniinstruments.co.uk
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truth irradiation (cf. Fig. 5 in supplementary material), a determi-
nant impact factor for estimating the potential of a solar site.

These reasons motivated us to develop a framework that could
report solar irradiation cross-locationally and historically.The frame-
work could aid in both efficiency monitoring and site selection.
With further investigation, we discovered among several influenc-
ing factors such as cloud coverage, aerosol concentration, terrain
and etc., cloud is of the most decisive factor [19]. Based on such in-
sight, we made a novel proposal to apply ConvNet on off-the-shelf
satellite images. Our contributions summarize as follows:

• Wecollected SATIDataset for future research on cross-location
irradiation prediction.

• We identified the crucial role ofmeteorological domain knowl-
edge and investigated fusion of two diverse modalities. e.g.
image and metadata.

• Weuncovered the spatiotemporal recurrence inside satellite
images and designed an autoencoder to leverage such prop-
erty to unsupervisedly enhance model training.

• We achieved promising performance to the state-of-the-art
meteorological framework in cross-location irradiation pre-
diction with simply satellite images.

• The MAPE of our method is 25% lower than that of Solrgis,
a commercialized solar data provider.

2 RELATEDWORK
Manywork have been focusing on solar irradiance forecastingwith
different approaches and media. Researchers have tried Numeric
Weather Prediction schemes [17], all-sky camera [7] and wireless
sensor network of cheap light sensors [1] for solar irradiance fore-
casting.

Different to the above approaches, which required additional
equipment for irradiance forecasting, researchers [3, 18] utilized
the weather forecasting from nearby locations as the foundation
for irradiance forecasting at the target site.

These methods havemitigated the needs of instrumentation to a
certain extent. Yet, the supposition of existence of weather stations
nearby is still too strong (the average distance to the nearest sta-
tion in Taiwan is roughly 17 km. 9 km for the USA before removal
of stations without irradiation.) Such resolution renders the trans-
ferability of weather quantities from nearby stations questionable
considering the fickle nature of weather (cf. Fig. 5 in supplemen-
tary material.)

Also, the aforementioned work all dedicated to the temporal as-
pect (changing time only) of solar irradiance prediction, that is,
forecasting the solar irradiance of a fixed location. Few addressed
the spatial aspect, namely, the prediction of solar irradiance at any
place.

Such service is beneficial not only to monitoring of PV power
generation, which is commonly based on expensive andmeticulously-
tuned pyranometers, but also to site selectionwhere the estimation
of the potential accumulated irradiation at an arbitrary geolocation
is needed. We hence proposed a framework capable of reporting
cross-location solar irradiation both currently and historically.

The most related work to ours is Kosmopoulos et.al (2018) [15],
which provided cross-location irradiance through the use of neural
networks on results obtained from radiative transfer model (RTM)

LibRadtran, which achieved state-of-the-art estimation of solar ir-
radiance.

While their method did provide a cross-location assessment to
solar irradiance, it required numerous types of data input inclusive
of aerosol optical density, water vapor and ozone column, which
are rather inapplicable in practical scenarios. On the contrary, we
relied simply on easily accessible satellite images and achieved a
comparable and likely complementary performance.

3 SATELLITE IRRADIATION DATASET (SATI)
SATI contains two sub datasets, SATI-Taiwan and SATI-BSRN. SATI-
Taiwan contains 30 stations located in Taiwan, of which we held
out 3 stations for validation. SATI-BSRN contains 2 stations – Fukuoka,
Japan (33.5822, 130.3764) and Kwajalein (8.7200, 167.7310) and we
used it solely to validate cross-location prediction capability of the
proposed method. SATI-Taiwan and SATI-BSRN contain pairs of
six satellite image patches (each separated by 10 minutes) cropped
from the Japanese satellite Himawari-8 and a hourly irradiation
ground truth from Central Weather Bureau and Baseline Surface
Radiation Network [16] respectively.

There are 550*550 pixels for the RGB visible channel and the res-
olution is 1 km/pixel, while for infrared channel, there are 550*550*1
pixels with resolution being 2 km/pixel. Note that the ground truth
irradiation we referred to in both the two sub datasets were from
stations where pyranometers are under regular cleaning and cal-
ibration of radiation experts and meteorologists in charge [8, 21].
Also though the images are available for download after roughly
20 minutes after being taken, it does no harm to efficiency moni-
toring and site selection where inspection is usually performed on
a daily or annual basis.

Data in SATI-Taiwan are from July 7th, 2015 to March 31st, 2018
and data in SATI-BSRN are from January 1st to December 31st 2017
(for Kwajalein, we took data from September 1st 2016 to August
30th 2017 since the station closed at Sep. 2017). (Please refer to Fig.
7 in supplementary material for more details.)

3.1 Data Preprocessing
We aligned each station to the corresponding pixel on the satellite
images. Then we cropped the surrounding 25*25 pixels for both
the visible and infrared channels, which were stacked to form a
4-channel patch.

Next, we associated 6 ten-minute-gapped patches in an hour to
the corresponding hourly irradiation. For instance, we associated
patches of Station A at 09:10, 09:20, …, 10:00 to the irradiation from
09:00 to 10:00 of Station A. Hence, a (X ,Y ) pair consists of six four-
channel patches as X and the corresponding irradiation as Y .

4 PROPOSED METHOD
We proposed MEtadata-augmented REcurrent network for Solar
irradiation Assessment (MERESA). We separated the model into
three parts, namely, irradiation predictor, metadata decoder and
spatiotemporal autoencoder. For each part, we will illustrate our
logic of design and the insight we uncovered from the datasets.
See the framework in Fig. 2.
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Figure 2: (a) We combine visible and infrared patches. An attention map derived from metadata encoder that captures the
rough Sun position is multiplied to highlight the more influential (sunlit) areas, shown in (b)(1). Then a ResNet-LSTM model
is deployed to extract spatial and temporal relationships between patches. Also, shown in (b)(2), to aid the training process
under limited stations and data, we proposed novel multitasking learning to utilize the repetitiveness of the same stations in
the dataset. Such weak supervision is enforced by reconstruction to the original and a cloudless patch of the same place. [Best
viewed in color.]
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Figure 3:We convert Sun positions (domain knowledge) into
attention maps that could capture the most sunlit region
on satellite images, where cloud dynamics affect irradiation
themost. We then weighted the satellite images accordingly
with the attention maps.

4.1 Irradiation Predictor
For image feature extractor, we simplified off-the-shelf ResNet16
[12] by changing the first 7x7 convolution to 3x3 and cutting the
number of channels in each layer to better fit our image size. Also,
we removed max pooling, which is potentially harmful for regres-
sion tasks on satellite images as discussed in Chen et al. [6]. We
trained ResNet from scratch since our target bears a large differ-
ence to object recognition task such as ImageNet. After ResNet,
we placed a LSTM to capture the temporal relationships between
patches, which outputs the predicted hourly irradiation.

4.2 Metadata Encoder
Due to the alternation of day and night and the change of four
seasons, time and date largely impacts the irradiation distribution
received at a given location. Intuitive solution would be to provide
date and time as auxiliary inputs to the model. Yet, one place could
still has daylight, while another is already after nightfall even at the
same local time due to altitude difference. Therefore, we proposed
to use Sun position instead.

Given date, time and geolocation, we computed the correspond-
ing azimuth and elevation, which we then transformed into two
one-hot vectors of length 360 and 180 respectively after rounding
to the nearest integer. Then, the two vectors were concatenated to
a single vector, which was then fused with conv features of the
satellite images.

We designed an attention-like early fusion method that guide
the network to focus on specific regions of the input patch that are
most sunlit. Specifically, We designed an encoder to transform the
one-hot vector into a map with the same size as the satellite image,
which is then multiplied on the image to obtain the final input to
ResNet, as shown in Fig. 2(b)(1) with detail parameters in Fig. 3.

The metadata encoder comprised of one fully connected layer
and four transpose convolution layers with batch normalization
before the ReLU, whose kernel size are all 3 and stride is 2, 1, 2, 2
respectively.

4.3 Spatiotemporal Recurrence Autoencoder
Since the number of data is limited and only single value irradia-
tion is available for supervision, we proposed a novel method to
harness the implicit patterns both spatially and temporally in the
dataset for multitask learning that assists model training (cf. Table
5).

The SATI-Taiwan Dataset contains satellite images for two and
half yearswhile includes irradiations for the same 30 stations. Based
on such spatial and temporal repetitiveness, we could find cloud-
less patches for a chosen station at a specific time and around an
arbitrary day of year. Hence, even without labeled information of
cloud, the model could pick up land and partial cloud information
by comparing the input patch to a cloudless one.

We hence designed an autoencoder to unsupervisedly leverage
this information and guided the network by force of reconstruction
from the conv feature to both the clean and the original patch.
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Specifically, we split the conv feature from ResNet into two,
shown in Fig. 2(b)(2). The first feature noted goes through a de-
coder and outputs a reconstructed clean patch. Then Mean Square
Loss (MSE) is computed with the clean patch. For this feature, we
try to capture the surrounding landscape information of an arbi-
trary station.

The second feature is added with the first part, goes through the
same decoder, and outputs a patch, where MSE is computed with
the original patch. For this part, we try to catch cloud information.

5 EXPERIMENTS
5.1 Evaluation Metrics
The evaluation was based on Relative Root Mean Squared Error
(rRMSE), that quantifies the spread of errors and makes compar-
isons across seasons and stations more reasonable. And to quan-
tize the deviation from ground truth, we usedMean Absolute Error
(MAE).

5.2 Metadata Fusion
We explored the commonly used multi-modality fusion methods
on satellite image and metadata features including concatenation,
inner and outer product.

The annual rRMSE on SATI-BSRN of different fusion methods
are summarized in Table 1. We could observe the performance
of early attention outperformed the other commonly used fusion
methods, further confirming the suitability of the proposed design.
Also, the performance of the models that were trained with Sun
position were better than those trained with time, showcasing the
necessity and generality of Sun position in cross-location predic-
tion.

In addition, we visualized the attention maps of a validation sta-
tion from morning to afternoon. We could observe the attention
area on the map shifted with time as if capturing the Sun trace. (cf.
Fig. 8 in supplementary material.)

Concat Inner Product Outer Product Attention Map

Time 0.2932 0.2978 0.2996 0.3071
Sun position 0.1860 0.2377 0.1686 0.1627

The rRMSE without metadata is 0.2450.
Table 1: The rRMSE of different fusion methods on SATI-
BSRN. Performance of the models based on time dropped
dramatically since time alone is insufficient to refer Sun
position without latitude. Those based on Sun position are
maintained well when tested on different geolocations.

5.3 Validation in Different Geo-locations
We reported the seasonal and annual rRMSE of three validation
stations of SATI-Taiwan and two stations of SATI-BSRN in Table
2.

The moderate performance decay in cross-geolocation scenar-
ios testified that our model, despite trained in a small geolocation
range, could be applied on a wide range of geolocations without
tuning.

SATI-Taiwan SATI-BSRN
Taipei Taichung Kaohsiung Fukuoka Kwajalein

Spring 0.1503 0.1605 0.0936 0.1393 0.1434
Summer 0.1630 0.1689 0.1255 0.1399 0.1413
Autumn 0.1604 0.1470 0.1096 0.1677 0.2042
Winter 0.1737 0.1278 0.0944 0.2548 0.1221

Annual 0.1609 0.1543 0.1095 0.1557 0.1994

Table 2: The rRMSE of the proposed model on SATI Dataset.
The proposed model performed steadily on different geolo-
cations while only trained on SATI-Taiwan.

5.4 Comparison to Related Work
Wecompared ourmethod to Kosmopoulos et.al [15], which claimed
the state-of-the-art performance on BSRN stations and focused on
cross-location irradiance prediction. Since the BSRN stations they
referred to are different from ours, which are mostly located in Eu-
rope and beyond the coverage of Himawari-8, we resorted to the
mean errors computed with all stations (which to a certain extent,
cancels variations in different stations.) Note that under such con-
straints of non-overlapping stations, the comparison by no means
indicates absolute dominance of one over the other but to provide
a rough idea of how well the proposed method performs.

The reported hourly mean difference in Kosmopoulos et.al [15]
is -70 and 40W/m2 at 25th and 75th percentile, whichwe converted
into MAE under the most optimistic scenario. We assumed no de-
terioration from both 25 to 0 quantile and 75 to 100 quantile and a
zero error from 25 to 75 quantile (Largely in favor of their method).
Under such assumption, the MAE is (|−70| ∗25+ |40| ∗25)/100 =
27.5 W/m2. We then multiplied it by 3600 to obtain the approxi-
mate accumulated hourly irradiation.

The comparison is shown in Table 3. We demonstrated with
solely satellite images, we performed comparatively with the state-
of-the-artmeteorologicalmodel, which requiresmultiple data sources
like aerosol, ozone column, just to name a few.

5.5 Comparison to Commercialized Product
We compared our model to Solargis, the solar irradiation provider
designated by theWorld Bank Group. It claims state-of-the-art per-
formance combining irradiance from clear-sky model and cloud in-
dex calculated with both the visible and infrared channels of satel-
lite images. We purchased annual irradiation data of 2018 at two of
the validation stations in SATI-Taiwan and compared our results
with theirs. In Table 4, we could observe with solely satellite im-
ages, ourmodel achieve lower daily and hourlyMAPE compared to
Solargis, which requires multiple data scources inclusive of atmo-
spheric parameters, environmental variables and satellite images.

Note that our predictions are currently based on Himawari-8
and we are extending to other satellites around the globe in the
future.
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Kosmopoulos et.al [15] Ours
Annual MAE (MJ/m2) 0.099a 0.099

a This is an approximate comparison, due to the non-overlapping data sources.
Table 3: Our method performed comparatively with the
state-of-the-artmeteorological method, whichmostly relies
on numerical approaches with a few learning based tools. It
shows that we provide a new and yet complementary aspect
for solar irradiation prediction based on CNN and satellite
images.

Taipei KaoHsiung

MAPE ↓ Hourly Daily Hourly Daily
Ours 0.558 0.289 0.294 0.318

Solargis 0.794 0.488 0.444 0.583
Table 4: MAPE comparison to Solargis in both hourly and
daily bases. With simply satellite images, our hourly MAPE
is lower than Solargis by 25% in absolute scale, which utilizes
multiple data sources inclusive of atmospheric parameters,
environment variables and satellite images.

6 CONCLUSION
Weproposed a cross-location irradiation prediction framework based
on off-the-shelf satellite images.Themethod is shown complemen-
tary to traditional meteorological ones.

We identified the significance of domain-specific metadata (e.g.,
Sun position) and proposed a novel fusion method. Such findings
can be extended to other neural network applications where meta-
data is informative besides raw (and low-level) signals. Observing
the spatiotemporal recurrence in satellite patches, we designed a
recurrence autoencoder to aid the training process.

We verified our model against two stations of different geolo-
cations and showcased its feasibility as a global solar irradiation
predictor. And we achieved a promising performance compared to
the state-of-the-art framework with satellite images alone and out-
performed Solargis that is widely used by the World Bank Group.

We will release the SATI Dataset for future research. For future
work, besides exploration of more satellite and input patch size, we
would investigate the possibility of irradiation forecasting based
on satellite images with meteorological quantities, such as precip-
itation, wind, visibility, etc.
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A APPENDICES
B IMPLEMENTATION DETAILS
B.1 Training Details
All trainings were carried out on a Nvidia GeForce GTX 1080 Ti,
and optimized by Adam with betas (0.9, 0.999), learning rate 1e-4
and zero weight decay. The weight initialization was Xavier for
both convolution and fully connect layer. Batch size is 128. All
satellite images were normalized with subtraction of 127 followed
by division of 127 into (-1, 1) range. Training loss is based on Mean
Squared Error for both irradiation prediction and image reconstruc-
tion. All experiments and framework are developed and deployed
with pytorch 0.4.1, CUDA 8 and cuDNN 5.1 on Ubuntu 16.04.

B.2 Geographic Coordinate to Pixel
To map a pair of latitude and longitude to the corresponding pixel
on satellite images, we first manually labeled four anchors by look-
ing for landmarks that are not only searchable online for latitude
and longitude but also lie in discriminative pixel on satellite im-
ages that is easy to spot (e.g. lighthouse located at the border of
land and ocean).

Then, with either three of the four anchors, we could obtain the
number of pixels in width and height covered by one degree of lat-
itude or longitude (e.g. 1 ◦ increase in latitude maps to 100 pixel
change in height and 10 pixel change in width). Obtaining the map-
ping scale between latitude/longitude and pixel, we could get the
pixel coordinate by converting the latitude/longitude difference to
pixel difference between the target location and one of the three
anchors that we chose. Since we could choose between four differ-
ent anchor sets, we averaged the four obtained pixel coordinates to
obtain the final one. Note due to projection distortions, the above
method could only be used locally. That is, one will have to find
different anchors when applying the aformentioned method onto
different regions across the globe.

B.3 Search algorithm for Cloudless Patch
To obtain a supporting clean patch for an arbitrary day and time,
we applied an heuristic based on our observation that clouds are
always whitish. This means the average brightness of a patch with
more clouds is often higher if all the comparing patches are of the
same place and of the same day and time.

For the visible part, we first converted RGB into intensity fol-
lowing the method proposed in Matthew et al. (1996) [2]. We then
grouped the patches into 8760 bins (365 * 24, based on a hourly res-
olution omittingminute and 29th Feb. in leap years).Then given an
arbitrary input patch, we searched from the bins of the same hour
in a date range, specifically 10 days, before and after the given day
of year. The patch with the lowest mean brightness is selected as
the visible part of the clean patch. And the cloudless patch for the
infrared channel is simply an one-channel image with nothing but
zeros.

(a) (b) (c)

Figure 4: Data augmentation. (a) The original satellite im-
age. (b)Thenaive flipping breaks themutual relationship be-
tween Sun and clouds. (c) Flipping with Sun position. [Best
viewed in color]

C OTHER EXPERIMENTS
C.1 Ablation Studies
Weperformed a series of ablation studies to further verify the effec-
tiveness of the major components, namely, the metadata attention
map, the spatiotemporal recurrence autoencoder and the metadata
based data augmentation. We sequentially removed the compo-
nents and the continual drop in performance could be noticed in
Table 5.

Mote that fusion of Sun position also facilitated data augmenta-
tion in the task. While techniques like horizontal and vertical flip-
ping are broadly used in various image tasks, they are ineffective
and even harmful to solar irradiation prediction since relative po-
sitions of Sun and clouds matter and naively applying these tech-
niques disrupts the mutual relationships. Yet, if we alter the sun
position correspondingly, we could safely perform data augmenta-
tion, as illustrated in Fig. 4. We could also see in Fig. 5 that if we
performed data augmentation without changing metadata corre-
spondingly, the performance is even slightly inferior to the model
with no augmentation.

Infrared Metadata Auto Augmentation rRMSE MAE
Channel Attention Encoder

- - - - 0.2604 0.1305
V - - - 0.2635 0.1247
V V - - 0.1487 0.0859
V V V - 0.1466 0.0718
V V V V 0.1403 0.0706
V V V w/o Metadata 0.1484 0.0736

Table 5: Ablation studies on SATI-Taiwan. The improving
performances demonstrate the effectiveness of each pro-
posed component.

C.2 Performance in Real Scenarios
Wehave deployed our framework onto several running solar plants
where pyranometers were instrumented and regularly cleaned and
calibrated.We referred to these pyranometers for ground truth and
validated our prediction against the readings. Note that in prac-
tice, pyranometers are not always avialable and in regular matinte-
nance. We set up a baseline by directly using the readings from the
closest weather station for comparison with the proposed method.

The sites we referred to are located in the southern part of Tai-
wan for its stable and ample sunlight. The geographic coordinates
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Figure 5: Real cases with seasonal rRMSE shown aside. Our
predictions fit well to ground truth irradiations compared
to readings from even the closest weather station, which is
28.74 km away. It demonstrates the deficit of referring to
the closest weather station and the necessity of our method
concerning weather locality. [Best viewed in color.]

of the site is (23.61762, 120.1842), and the closest weather station
is 28.74 km away.

We randomly picked a day from each of the four seasons and
plotted the irradiation from the pyranometer (ground truth), the
closest station and our framework. As shown in Fig. 5, our predic-
tion curves not only lie closer to the ground truth ones but the
seasonal rRMSE are smaller compared to that of the closest station
in all cases. Fig. 5 also demonstrates the locality of weather and
showcases the potential issues of naively referring to the closest
weather station since weather status could vary in even several
kilometers.

D REAL-SCENARIO AND POTENTIAL CASES
D.1 Site Selection
Our method could assist PV site selection where accumulated ir-
radiation over a period of time of arbitrary locations are required.
In these scenarios, no prior pyranometers could be referred to and
using readings from the closest weather station is prone to large
errors (cf. Subsec. C.2). With the proposed method, a user could
specify an arbitrary location with a query time range, and obtain
the corresponding accumulated irradiation.

D.2 Efficiency Monitoring
We calculated the PR value by dividing the actual generation out-
put of the PV panels reported from the inverters to the theoretical
output calculated with the predicted irradiation from our method.
When PR is below a preset threshold for too long, we issue a warn-
ing to our clients, recommending them to schedule an examina-
tion for possible stains, cracks andmalfunctions.With the warning
mechanism, we could largely prevent possible financial loss due to
unnoticed efficiency degradation.

The mechanism could not only be used on sites that lacks of
pyranometer instrumentation (prevalent inmany roof-top and com-
munity sites), but also as a complement to pyranometers for effi-
ciency trend monitoring and possible indication of potential pyra-
nometer malfunction.

Figure 6: Irradiation heatmap produced with the proposed
method and the corresponding satellite image at the same
timestamp.We could see the cloud distribution is highly cor-
related to that of irradiation. [Best viewed in color.]

(d)

(d)

Kwajalein
Kwajalein

(c)
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(b)

Fukuoka, Japan

(a)

b

c

d

(d)(c)

Figure 7: (a) We took the corresponding patches from the
full-disk satellite image where SATI stations lie in, noted as
b, c and d. We further cropped a 25*25 surrounding region
for each station, shown as yellow rectangle in (b), (c) and
(d). (b) The training (green) and the three validation stations
(red) in SATI-Taiwan. (c)(d) The two BSRN stations. [Best
viewed in color.]

N N NN N

Time  (GMT+8) 08:00 10:00 12:00 14:00 16:00
Elevation 34.78 61.90 88.16 63.00 35.85
Azimuth 78.61 87.29 162.32 272.26 281.00

Figure 8: The weighted area shifts with Sun from morning
to afternoon and reflects the Sun incident angles from East
to West in the metadata-encoded attention maps (Taichung
station on July 9th, 2015.). Note the corresponding elevation
and azimuth are listed aside.

D.3 Environmental and Agricultural Impact
Solar radiation has an important factor on crop production [5], as it
affects other factors like soil moisture and plant’s rate of evapora-
tion. Hence, potentially with the proposed method, agricultural de-
cisions like where and when to plant certain plants could be made
with ease as different plants require different amount of irradia-
tion.
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D.4 Irradiation Web Service
We have set up a website (http://thingnario-fs.synology.me:39080/
?email=reviewers@easychair.org&password=admin) that provides
irradiation on every single point of Taiwan with a rough 30 minute
delay. A screenshot of the website and its corresponding satellite

image are shown in Fig. 6. The colors on the screenshot repre-
sent different quantity of irradiation. We could observe that the
distribution of visual cloud thickness in the satellite image highly
matches with the intensity of the heatmap. Users could click on an
arbitrary location to view the current irradiation, sunshine hour
of today and yesterday, enabling other possible irradiation related
applications.

http://thingnario-fs.synology.me:39080/?email=reviewers@easychair.org&password=admin
http://thingnario-fs.synology.me:39080/?email=reviewers@easychair.org&password=admin
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