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ABSTRACT
We present a probabilistic forecasting framework based on convo-
lutional neural network for multiple related time series forecast-
ing. The framework can be applied to estimate probability density
under both parametric and non-parametric settings. More specifi-
cally, stacked residual blocks based on dilated causal convolutional
nets are constructed to capture the temporal dependencies of the
series. Combined with representation learning, our approach is
able to learn complex patterns such as seasonality, holiday effects
within and across series, and to leverage those patterns for more
accurate forecasts, especially when historical data is sparse or un-
available. Extensive empirical studies are performed on several real-
world datasets, including datasets from JD.com, China’s largest
online retailer. The results show that our framework outperforms
other state-of-the-art methods in both accuracy and efficiency.
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1 INTRODUCTION
Time series forecasting plays a key role in many business decision-
making scenarios, such as managing limited resources, optimiz-
ing operational processes, among others. Most existing forecast-
ing methods focus on point forecasting, i.e., forecasting the con-
ditional mean or median of future observations. However, prob-
abilistic forecasting becomes increasingly important as it is able
to extract richer information from historical data and better cap-
ture the uncertainty of the future. In retail business, probabilistic
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forecasting of product supply and demand is fundamental for suc-
cessful procurement process and optimal inventory planning. Also,
probabilistic shipment forecasting, i.e., generating probability dis-
tributions of the delivery volumes of packages, is the key compo-
nent of the consequent logistics operations, such as labor resource
planning and delivery vehicle deployment.

In such circumstances, instead of predicting individual or a small
number of time series, one needs to predict thousands or millions
of related series. Real-world applications are far more complicated.
For instance, newproducts emergeweekly on retail platforms. Fore-
casting the demand of products without historical shopping fes-
tival data (e.g., Black Friday in North America, “11.11” shopping
festival in China) is another challenge. Furthermore, forecasting
often requires the consideration of exogenous variables that have
significant influence on future demand (e.g., promotion plans pro-
vided by operations teams, accurateweather forecasts for brick and
mortar retailers). Such forecasting problems can be extended to a
variety of domains. Examples include forecasting the web traffic
for internet companies [16], the energy consumption for individ-
ual households, the load for servers in a data center [9] and traffic
flows in transportation domain [19].

Classical forecasting methods, such as ARIMA [5] and exponen-
tial smoothing [13], are widely employed for univariate base-level
forecasting. To incorporate exogenous covariates, several exten-
sions of these methods have been proposed, such as ARIMAX and
dynamic regression models [14]. These models are well-suited for
applications in which the structure of the data is well understood
and there is sufficient historical data. However, working with thou-
sands or millions of series requires prohibitive labor and comput-
ing resources for parameter estimation. Moreover, they are not ap-
plicable in situations where historical data is sparse or unavailable.

Recurrent neural network (RNN) [10] and the sequence to se-
quence (Seq2Seq) framework [8, 32] have achieved great success in
many different sequential tasks such as machine translation [32],
languagemodeling [23] and recently found applications in the field
of time series forecasting [9, 18, 27, 34]. For example, in the fore-
casting competitions community, a gated recurrent unit (GRU) [8]
based Seq2Seq model won the Kaggle web traffic forecasting com-
petition [31]. A hybrid model that combines exponential smooth-
ing method and RNN won the M4 forecasting competition, which
consists of 100,000 serieswith different seasonal patterns [21]. How-
ever, training with back propagation through time (BPTT) algo-
rithm often hampers efficient computation. In addition, training
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RNN can be remarkably difficult [26, 35]. Dilated causal convo-
lutional architectures, e.g., Wavenet [33], offer an alternative for
modeling sequential data. By stacking layers of dilated casual con-
volutional nets, receptive fields can be increased, and the long-term
correlations can be captured without violating the temporal orders.
In addition, in dilated causal convolutional architectures, the train-
ing process can be performed in parallel, which guarantees com-
putation efficiency.

Most Seq2Seq frameworks or Wavenet [33] are autoregressive
generative models that factorize the joint distribution as a prod-
uct of the conditionals. In this setting, a one-step-ahead predic-
tion approach is adopted, i.e., first a prediction is generated by
using the past observations, and the generated result is then fed
back as the ground truth to make further forecasts. More recent re-
search shows that non-autoregressive approaches or direct predic-
tion strategy, predicting observations of all time steps directly, can
achieve better performances [1, 11, 34]. In particular, Non-autore-
gressive models are more robust to mis-specification by avoiding
error accumulation and thus yield better prediction accuracy.More-
over, training over all the prediction horizons can be parallelized.

Having reviewing all these challenges and developments, in this
paper, we propose the deep temporal convolutional network (Deep
TCN), a non-autoregressive probabilistic forecasting framework
for large collections of related time series.

The main contributions of the paper are as follows:
• We propose a convolutional-based forecasting framework
that provides both parametric and non-parametric approaches
for probability density estimation.

• The framework, being able to learn latent correlation among
series and handle complex real-world forecasting situations
such as data sparsity and cold starts, shows high scalability
and extensibility.

• Extensive empirical studies showour framework outperforms
other state-of-the-artmethods on both point forecasting and
probabilistic forecasting.

• Compared to recurrent architectures, the computation of
convolutional models can be fully parallelized and thus high
training efficiency can be achieved. Meanwhile, the opti-
mization is much easier. In our cases, the training time is
up to 1/8 of that of the recurrent models reported in the
literature [9].

• The model is very flexible and can include exogenous co-
variates such as an additional promotion plan or weather
forecasts.

The rest of this paper is organized as follows. Section 2 provides
a brief review of related works on time series forecasting and deep
learning methods for forecasting. In Section 3, we describe the pro-
posed forecasting method, including the probabilistic forecasting
framework, the neural network architectures and the input fea-
tures. We demonstrate the superiority of the proposed approach
via extensive experimental results in Section 4 and conclude the
paper in Section 5.

2 RELATEDWORK
Earlier studies on time series forecasting are mostly based on sta-
tistical models, which are mainly generative models based on state

space framework such as exponential smoothing, ARMA models,
their integrated versions (ARIMA) and several other extensions.
For these methods, Hyndman et al. [13] and Box et al. [5] provide
a comprehensive overview in the context of univariate forecasting.

In recent years, large quantities of related series are emerging
in the routine functioning of many companies. Not sharing infor-
mation from other time series, traditional univariate forecasting
methods fit amodel for each individual time series and thus can not
learn across similar time series. Therefore, methods that can pro-
vide forecasting onmultiple series jointly have received increasing
attention in the last few years [36].

Both RNNs and CNNs have been shown to be able to model
complex nonlinear feature interactions and yield substantial fore-
casting performances, especially when many related time series
are available [2, 9, 18, 27, 29, 34]. For example, Long Short-Term
Memory (LSTM), one type of RNN architecture, won the CIF2016
forecasting competition for monthly time series [30]. Bianchi et al.
[3] compare a variety of RNNs in their performances in the Short
Term Load Forecasting problem. Borovykh et al. [4] investigate the
application of CNNs to financial time series forecasting.

To better understand the uncertainty of the future, probabilistic
forecasting with deep learning models has attracted increasing at-
tention. DeepAR [9], which trains an auto-regressive RNN model
on a rich collection of similar time series, produces more accurate
probabilistic forecasts on several real-world data sets. The deep
state space models (DeepState), presented by [27], combine state
space models with deep learning and can retain data efficiency and
interpretability while learning the complex patterns from raw data.
Under a similar scheme, Maddix et al. [20] propose the combina-
tion of deep neural networks and Gaussian Process.

Most of these probabilistic forecasting frameworks are autore-
gressive models, which uses recursive strategy to generate multi-
step forecasts. In neural machine translation, non-autoregressive
translation (NAT)models have achieved significantly inference spee-
dup at the cost of slightly inferior accuracy compared to autore-
gressive translationmodels [11]. Bai et al. [1] propose a non-autore
gressive framework based on dilated causal convolution and the
empirical study on multiple datasets shows the framework outper-
forms generic recurrent architectures such as LSTMs and GRUs.
In forecasting applications, non-autoregressive approaches have
also been shown to be less biased and more robust. Recently, Wen
et al. [34] present a multi-horizon quantile recurrent forecaster to
combine sequential neural nets and quantile regression [17]. By
training on all time points at the same time, their framework can
significantly improve the training stability and the forecasting per-
formances of recurrent nets.

Our method differs from the aforementioned approaches in the
followingways. Firstly, instead of applying gatingmechanismused
in Wavenet [33], residual blocks are applied to stabilize the train-
ing of the network and help achieve superior forecasting accuracy.
Inspired by the models such as ARIMAX, a novel decoder based
on a variant of the residual neural network is designed to incor-
porate information from past observations and exogenous covari-
ates. Finally, our model enjoys the flexibility to embrace a variety
of probability density estimation approaches. We demonstrate that
our method indeed has the potential to solve those more challeng-
ing forecast tasks with great efficiency.
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3 METHOD
We start by describing a general probabilistic forecasting problem
formultiple related time series. Given a set of time series {y(i)}Ni=1,
where N is the number of the series, the goal is to model the condi-
tional distribution of the future time series y(i)

(t+1):(t+Ω)
for each

i = 1, . . . ,N :

P
(
y
(i)
(t+1):(t+Ω)

|y(i)1:t ,X
(i)
1:t ,X

(i)
(t+1):(t+Ω)

)
, (1)

where Ω denotes the length of the forecasting horizon; y(i)1:t are
the historical observations of the ith series; X (i)

1:t is a set of covari-
ate vectors which can be static (e.g., product id) or time-varying
(e.g., price of the product or promotion information);X (i)

(t+1):(t+Ω)

are covariates representing the corresponding information about
the future. Under the Seq2Seq framework [8, 32], the input se-
quences including y

(i)
1:t and X

(i)
1:t can be encoded into latent vari-

ablesh(i)t , and hence the conditional distribution of future observa-
tions y(i)

(t+1):(t+Ω)
can be reformulated by using direct prediction

strategy:
Ω∏

ω=1

P(y
(i)
t+ω |h

(i)
t ,X

(i)
t+ω ). (2)

In the following sections, we describe the probabilistic forecast-
ing framework, the neural network architecture, and some practi-
cal considerations of input features.

3.1 Probabilistic forecasting framework
We consider two probabilistic forecasting frameworks in this pa-
per. The first one is a parametric framework, in which probabilis-
tic forecasts of future observations can be achieved by directly
predicting the parameters (e.g., the mean and the standard devi-
ation for Gaussian distribution) of the hypothetical distribution
based on maximum likelihood estimation. The second one is non-
parametric, which produces a set of forecasts corresponding to
quantile points of interest [17].

Neural networks enjoy the flexibility to produce multiple out-
puts for each future observation: Z = (z1, . . . , zm), where Z rep-
resents the parameter set of the hypothetical distribution for the
parametric framework, and the quantile forecasts for the non-para-
metric framework.

In practice, whether to choose the parametric approach or the
non-parametric approach depends on the application context. The
parametric approach requires the assumption of a specific probabil-
ity distribution while the non-parametric approach is distribution-
free and thus is usually more robust. However, a decision-making
scenario may rely on the sum of probabilistic forecasts for a certain
period. For example, an inventory replenishment decision may de-
pend on the distribution of the sum of demand for the next few
days. In such cases, the non-parametric approach will not work
since the output (e.g., the quantiles) is not additive over time and
the parametric approach will have its advantage of being flexible
in obtaining such information by sampling from the estimated dis-
tributions.

3.1.1 Non-parametric approach. In the non-parametric frame-
work, the set of forecasts can be obtained by quantile regression. In
quantile regression [17], denoting the observation and the predic-
tion for a specific quantile level q as y and ŷq respectively, models
are trained to minimized the quantile loss :

Lq(y, ŷ
q) = q(y − ŷq)+ + (1 − q)(ŷq − y)+,

where (y)+ = max(0,y) and q ∈ [0, 1]. Given a set of quantile
levels Q = (q1, ...,qm), them corresponding forecasts can be ob-
tained by minimizing the total quantile loss:

LQ =
m∑
j=1

Lqj (y, ŷ
qj ) .

3.1.2 Parametric approach. For the parametric approach, given
the predetermined distribution (e.g., Gaussian distribution), themax-
imum likelihood estimation is applied to estimate the correspond-
ing parameters. Take Gaussian distribution as an example: for each
target value y, the network outputs the parameters of the distribu-
tion, namely the mean and the standard deviation, denoted by µ
and σ , respectively. The negative log-likelihood function is then
constructed as the loss function:

LG = − log ℓ(µ,σ |y)

= − log
(
(2πσ2)−1/2 exp

[
−(y − µ)2/(2σ2)

] )
=

1

2
log(2π) + log(σ) +

(y − µ)2

2σ2
.

We can extend this approach to a variety of probability distribution
families. For example, we can choose negative-binomial distribu-
tion for long-tail products.

It is worth mentioning that some parameters of a certain distri-
bution (e.g., σ in Gaussian distribution) must satisfy the condition
of positivity. To accomplish this, we apply “Soft ReLU” activation,
namely the transformation ẑ = log(1+ exp(z)), to ensure positiv-
ity [9].

3.2 Neural network architecture
The architecture of DeepTCN is illustrated in Figure 1a. The high-
level architecture is similar to the classical Seq2Seq framework. For
the encoder, stacked dilated causal convolutions are constructed
to capture the temporal dependencies. For the decoder, a variant
of residual block (a block with two inputs) is applied instead of
original RNN or dilated causal convolutions. The decoder is de-
signed in such a way for two reasons: 1) such a framework can
naturally cooperate two parts of inputs: the outputs of encoder and
the future covariates; 2) from the perspective of time series mod-
eling, a future observation can be considered to be composed of
an autocorrelation component determined by past covariates and
a nonlinear component determined by the future knowledge. In
other words, the residuals between the future observations and
predictions solely determined by the historical covariates can be
explained as the function of future covariates. And a variant of
residual block naturally captures such relationships between these
two inputs.

3.2.1 Encoder: Dilated causal convolutions. Causal convolutions
are convolutions where an output at time t can be only obtained
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(a) Architecture of DeepTCN
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ReLU
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ReLU
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Residual Block: (K,d)

(b) Encoder module

Dense Layer

Batch Norm

ReLU
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Batch Norm

ReLU
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Xt+ω,i ht,i

R(Xt+ω,i)

Inputs

Residual block with two inputs

(c) Decoder module

Figure 1: (a) Architecture of DeepTCN. Encoder part: stacked dilated causal convolutions are constructed to capture the long-
term temporal dependencies; Decoder part: a variant of residual block is designed to cooperate both historical covariates and
future covariates. (b) Ingredient for each layer of encoder, a residual module based on dilated causal convolutions. (c) Decoder
module: h(i)t is the output of encoder, X (i)

t+ω are the future covariates. R is the nonlinear function applied on X
(i)
t+ω .

from inputs that are no later than t . Dilation causal convolutions
allow the filter to be applied over an area larger than its length by
skipping input values with a certain step [33]. In the case of uni-
variate series, given a 1-D input sequence x , the output (feature
map) s at location t of a dilated convolution with kernel w can be
expressed as:

s(t) = (x ∗d w)(t) =
K−1∑
k=0

w(k)x(t − d · k), (3)

where d is the dilation factor, and K is the size of the kernel. Stack-
ing multiple dilated convolutions enable networks to have very
large receptive fields and to capture long-range temporal depen-
dencies with a smaller number of layers. The left part of Figure 1a
is an example of dilated casual convolutions with dilation factors
d = {1, 2, 4, 8}, where the filter size K = 2 and a receptive field of
size 16 is reached by staking four layers.

Figure 1b shows the basic module for each layer of the encoder,
where both of two dilated convolutions inside the module have the
same kernel size K and dilation factor d . Instead of implementing
the classical gating mechanism inWavenet [33], in which a dilated
convolution is followed by a gating activation, residual blocks are
taken as the ingredient. As shown in Figure 1b, each residual block
consists of two layers of dilated causal convolutions, first of which
is followed by a batch normalization and rectified nonlinear unit
(ReLU) [25] and second of which is followed by another batch nor-
malization [15]. The output after the second batch normalization
layer is added to the input of the residual block and the addition is
then followed by a second ReLU. Residual blocks have be proven to
help efficient training and stabilize the network, especially when
the input sequence is very long. More importantly, non-linearity
gained by rectified linear unit (ReLU) achieves better prediction
accuracy in our most of forecasting empirical study. Similar con-
clusions can also be found in various NLP tasks [1].

3.2.2 Decoder: Residual neural network. Figure 1c shows the
structure of the decoder. X (i)

t+1:t+ω are the future covariates and

h
(i)
t is the latent variable output by the encoder. R is the residual

function applied on X
(i)
t+1:t+ω to explain the residuals between

ground truth and predictions solely determined by the encoder
part. For the residual function R(·), we first apply a dense layer
and a batch normalization to project the future covariates. Then
a ReLU activation is applied followed by another dense layer and
batch normalization. Such a decoder also enjoys the flexibility to
include additional features (e.g., a promotion plans provided by op-
eration teams or weather forecast for brick and mortar retailers).
In the end, the decoder part produces the final output Z that cor-
responds to the probabilistic estimation of interest.

3.3 Input features
There are typically two kinds of input features: time-dependent
features (e.g., product price, a set of dummy variables like day-of-
the-week) and time-independent features (e.g., product_id, prod-
uct brand, category etc). Time-independent covariates such as prod-
uct_id contain series-specific information. Including these covari-
ates help capture the scale level and seasonality for each specific
series.

To capture seasonality, we use hour-of-the-day, day-of-the-week,
day-of-the-month for hourly data, day-of-the-year for daily data
and month-of-year for monthly data. Besides, we use hand-crafted
holiday indicators for shopping festival such as “11.11”, which en-
able the model to learn planned event spikes.

Dummy variables such as product_id and day-of-the-week are
mapped to dense numeric vectors via embedding [22, 24]. We find
that the model is able to learn more similar patterns across series
by representation learning and thus improve the forecasting accu-
racy for related time series, which is especially useful for series
with little or without historical data. In the case of new products
or new warehouses without sufficient historical data, we perform
zero padding to ensure the desired length of the input sequence.
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JD-demand JD-shipment electricity traffic parts

Number 50,000 1,450 370 963 1,406
Length [0, 1800] [0, 1800] 26,304 10,560 51
Domain N N R+ [0, 1] N
Granularity daily daily hourly hourly monthly

Table 1: Summary of the datasets used in the experiments.

4 EXPERIMENTS
In this section, we perform empirical studies on five datasets. The
information of the datasets is given in Table 1. JD-demand and
JD-shipment are two datasets from JD.com, which correspond to
two forecasting tasks for online retailers, demand forecasting of re-
gional product sales and shipment forecasting of the daily delivery
volume of packages for retailers’ warehouses. Since it is inevitable
for new products or warehouses to emerge, the training periods for
these two datasets can range from zero to several years and the cor-
responding forecasting tasks involve situations such as cold-starts
and data sparsity. Electricity 1, traffic 2 and parts 3 are three
public datasets which have been widely used in various time se-
ries forecasting evaluation studies. A more detailed description of
these datasets can be found in Appendix A.

The baseline methods evaluated on JD.com’s datasets are pre-
sented in Section 4.1. For public datasets, the proposed DeepTCN
framework is compared with published state-of-the-art methods.

4.1 Experimental settings
4.1.1 Baselines. Current baseline models for JD.com’s datasets

include JD-online, seasonalARIMA (SARIMA) andXGBoost.These
models are deployed and continuously improved to provide more
accurate forecasts and to better serve the consequent business op-
erations. More detailed description including feature lists, param-
eters can be found Appendix B.

• SARIMA: Seasonal ARIMA (SARIMA) is a widely used
time series forecasting model which extends the ARIMA
model by including additional seasonal term and is capable
of modeling seasonal behaviors from the data [5].

• XGBoost: Gradient boosting tree method has been empiri-
cally proven to be a highly effective approach in predictive
modeling. As one of efficient implementation of the gradi-
ent boosting tree algorithm, XGBoost has gained popular-
ity of being the winning algorithm in numerous machine
learning competitions, like Kaggle Competition [6].

• JD-online: JD-online is the current model used in produc-
tionwhich produces probabilistic forecasts by combining re-
sults from time series models such as SARIMA and results
inferred from the residuals between point forecasts of ma-
chine learning models and ground truth.

4.1.2 Evaluation metrics. The evaluation metrics used in our
experiments for point forecasting include Symmetric Mean Abso-
lute Percent Error (SMAPE), Root Mean Squared Logarithmic Er-
ror (RMLSE), Normalized Deviation (ND) and Normalized RMSE
1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
3http://www.exponentialsmoothing.net/supplements#data

(NRMSE). These metrics are defined as follows:

SMAPE =
1

N

∑�������
2
(
y
(i)
t − ŷ

(i)
t

)
y
(i)
t + ŷ

(i)
t

�������
RMLSE =

√
1

N

∑(
log

(
y
(i)
t + 1

)
− log

(
ŷ
(i)
t + 1

))2
ND =

∑
i,t

���y(i)t − ŷ
(i)
t

���∑
i,t

���y(i)t

���
NRMSE =

√
1
N

∑
i,t

(
y
(i)
t − ŷ

(i)
t

)2
1
N

∑
i,t

���y(i)t

���
where y(i)t is the true value of series i at time step t , ŷ(i)t is the

corresponding prediction value and N is the number of all points
in the testing periods.

For the evaluation of probabilistic forecasting, given a set of
time series y and corresponding predictions ŷ, we use ρ-quantile
loss, ρ ∈ (0, 1):

QLρ (y, ŷ) = 2

∑
i,t Pρ (y

(i)
t , ŷ

(i)
t )∑

i,t |y
(i)
t |

,

where

Pρ (y, ŷ) =

{
ρ(y − ŷ) if y > ŷ,
(1 − ρ)(ŷ − y) otherwise.

4.2 Results on JD.com’s datasets

Method JD-demand JD-shipment
Oct 2018 Nov 2018 Oct 2018 Nov 2018

JD-online 0.719/0.592 0.764/0.958 0.270/0.169 0.388/0.258
TCN-Quantile 0.653/0.528 0.698/0.701 0.173/0.100 0.247/0.160
TCN-Gaussian 0.697/0.588 0.720/0.873 0.188/0.105 0.326/0.219

Table 2: Comparison of probabilistic forecasts on JD-
demand and JD-shipment datasets. The quantile losses
ρ50/ρ90 are evaluated against online models over two test-
ing periods – Oct 2018 and Nov 2018.

4.2.1 Accuracy comparison. Webeginwith comparing the prob-
abilistic forecasting results of DeepTCN against JD-online over
two testing periods: Oct 2018 and Nov 2018. In particular, China’s
largest shopping festival “11.11” lasts from November 1 to Novem-
ber 12, during which November 11 is the biggest promotion day.
we choose the standard ρ50 and ρ90-quantile losses as the evalua-
tion metrics. We consider, within the DeepTCN framework, two
models for probabilistic forecasting , the non-parametric model
which predicts the quantiles and Gaussian likelihood model (we
refer to them asTCN-Quantile andTCN-Gaussian, respectively,
for the rest of the paper).More specifically,TCN-Quantile is trained
to predict ρ-quantileswith ρ ∈ {0.1, 0.5, 0.9}, andTCN-Gaussian
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Figure 2: Probabilistic forecasts of SARIMA and TCN-Quantile for three cases (randomly chosen for illustration purposes).
Case A and Case B show the forecasting results of two fast-moving products; Case C shows the forecasting results of the daily
delivery volume of packages from one warehouse. The ground truth, and the [10%, 90%] prediction intervals of SARIMA and
TCN-Quantile are shown in different colors.

estimates the mean and standard deviation for each future observa-
tion. The quantiles of TCN-Gaussian are obtained by calculating
the percent point function of Gaussian distribution (the inverse of
cumulative density function) at 0.5 and 0.9 quantile points.

The comparison results of JD-demand and JD-shipment are
illustrated in Table 2. As we can see, both TCN-Quantile and
TCN-Gaussian perform better than online results. In particular,
TCN-Quantile performs the best. There are two possible reasons
for that. First, TCN-Gaussian is constructed based on the gauss-
ian likelihood but JD-demand dataset does not necessarily follow
the assumption of normal distribution. Second, TCN-Quantile, in
light of the distribution-free nature, generates the quantile fore-
casts by minimizing the quantile loss functions which correspond
to our evaluation metrics directly.

4.2.2 Uncertainty estimation. In Figure 2, we show three cases
of probabilistic forecasts generated bySARIMA andTCN-Quantile.
Case A and case B are two demand forecasting examples of Oct
2018 and Nov 2018, respectively, while case C is an example of
shipment forecasting of Nov 2018. It is shown that for tasks of
both JD-demand and JD-shipment, TCN-Quantile generates
more accurate uncertainty estimation. Moreover, SARIMA pos-
tulates increasing uncertainty over time while the uncertainty es-
timation of DeepTCN is learned from the data. For example, the
uncertainty during the shopping festival period is huge due to both
promotion activities and intense market competitions.

4.2.3 Data sparsity. Next, we perform a qualitative analysis on
JD-shipment dataset over the testing period of November, for the
purpose of gaining a deeper understanding of the performance im-
provement exhibited by DeepTCN, as compared with other base-
line models. We choose this data because 1) it consists of series
whose magnitudes of volume are high and stable, and 2) The test-
ing period involves China’s biggest shopping festival “11.11”. As
mentioned before, the occurrence of this festival will result in a
spike for the shipment volume and make the forecasting task more
challenging.

We first present in Table 3 an accuracy comparison of point
forecasting between our model and other two baseline models in-
cluding SARIMA and XGBoost. The point forecasting results of

Data-group Method SMAPE RMSLE

All-data
SARIMA 0.369 0.789
XGBoost 0.430 0.820
DeepTCN 0.284 0.497

Group-1
SARIMA 0.323 0.644
XGBoost 0.312 0.630
DeepTCN 0.268 0.460

Group-2
SARIMA 0.430 0.832
XGBoost 0.457 0.967
DeepTCN 0.354 0.532

Table 3: Point forecasting accuracy comparison on SMAPE
and RMSLE of different subgroups of JD-shipment in Nov.
2018. All-Data represents all series with the length of train-
ing periods ranging from zero to four years; Group-1 in-
cludes the warehouses with historical data of more than
two years; Group-2 indicates series starting after 2018-01-01,
namely those with no historical shopping festival data.

DeepTCN is achieved by directly predicting the 0.5 quantiles.All-
Data consists of all series in the dataset; Group-1 includes series
with historical data longer than two years; Group-2 is chosen as
those series starting after 2018-01-01. We can see from Table 3
that DeepTCN achieves consistently the best accuracy with re-
gard to both metrics across all data groups. In particular, when
historical shopping festival data is not available, the performance
of SARIMA and XGBoost became much worse (the result of
Group-2), whileDeepTCNmaintains the same performance level.

In Figure 3, we illustrate cases of point forecasting under three
different scenarios.“11.11” is the major promotion day and we can
observe a spike in the true volume. In cases A-1 andA-2 , where his-
torical data ofmore than two years is available, all models can learn
a similar volume pattern, including the spike on “11.11”. However,
SARIMA and XGBoost in cases B-1 and B-2 fail to capture the
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Figure 3: Point forecasts of DeepTCN,SARIMA andXGBoost for six cases (randomly chosen from JD-shipment for illustration
purposes). Cases A-1 and A-2 are examples with historical data of more than two years; cases B-1 and B-2 show instances
without previous shopping festival data; cases C-1 and C-2 illustrate cold-start forecasting namely the forecasting of time
series with little historical data, e.g., less than three days. Note that Nov 11 is one of China’s biggest promotion days.

spike on “11.11” due to lack of sufficient training data such as his-
torical festivals. Finally, cases C-1 and C-2 are selected to demon-
strate how these models handle cold-start forecasting. It turns out
that DeepTCN stands out for this situation as it is able to cap-
ture both scale and curve pattern of the new warehouses by learn-
ing data from those old warehouses with similar store-specific fea-
tures.

4.3 Results on the public datasets
In this section, we evaluate our method on three public datasets
– electricity, traffic and parts. The electricity dataset contains
hourly time series of the electricity consumption of 370 customers;
the traffic dataset is a collection of the occupancy rates (between
0 and 1) of 963 car lanes from San Francisco bay area freeways;
the parts dataset is comprised of 1,046 time series representing
monthly demand of spare parts at a US car company. We com-
pare DeepTCN against MatFact [36], DeepAR [9] and Deep-
State [27], which got the strongest published results on these datasets.
We also report the results of classical forecasting methods includ-
ing auto.arima and ets. Both methods are implemented in R’s
forecast package [12].

4.3.1 Probabilistic forecasting. We start with conducting the ex-
periments of probabilistic forecasting. For electricity and traffic
dataset, we implement a 24-hour ahead forecasting task for last
seven days based on a rolling-window approach as described in [9].
It is worth noting that we use the same model trained on the data

before the first predictionwindow rather than retraining themodel
after updating the forecast point. For parts dataset, we evaluate
the performance for last 12 months. In all forecasting experiments,
we train the TCN-Quantile models to predict ρ-quantiles with
ρ ∈ {0.1, 0.5, 0.9}.

Table 4 illustrates the probabilistic forecasting results obtained
by these models. We use the same evaluationmetrics as in [27]. For
DeepState and DeepAR, we report the results obtained based on
the 2-week training range, while we show the result of DeepTCN
achieved by using one week as the training range. As shown in Ta-
ble 4, the probabilistic forecasting results of TCN-Quantile and
TCN-Gaussian outperform other state-of-the-art models on both
traffic and parts datasets. For electricity dataset containing series
that are not so related,DeepState achieves the best results and the
performance of DeepTCN is slightly worse. We believe that mod-
els such as DeepState and ES-RNN [21] have more advantages
on situations where time series are not highly correlated as they
specify unique parameters for each series.

4.3.2 Point forecasting. Table 5 reports the point forecasting re-
sults of DeepTCN (the quantile prediction with quantile point
0.5) compared against MatFact [36] and DeepAR [9]. The results
are similar with probabilistic forecasting comparison. For traffic
dataset with highly correlated series, DeepTCN achieves more
accurate forecasting by learning across the series and significantly
outperforms the other twomethodswhile the performance of DeepTCN
on electricity dataset is slightly worse than DeepAR.
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Dataset ets auto.arima DeepAR DeepState TCN-Quantile TCN-Gaussian
electricity 0.121/0.101 0.283/0.109 0.153/0.147 0.087/0.05 0.114/0.058 0.124/0.078
traffic 0.621/0.650 0.492/0.280 0.177/0.153 0.168/0.117 0.115/0.079 0.141/0.097
parts 1.639/1.0086 1.6444/1.0664 1.273/1.086 1.470/0.935 1.066/0.923 1.245/0.930

Table 4: ρ50/ρ90-losses evaluation on public datasets.

Method electricity traffic
ND NRMSE ND NRMSE

MatFact 0.25 1.40 0.19 0.42
DeepAR 0.08 0.49 0.27 0.56
DeepTCN 0.11 0.51 0.12 0.36

Table 5: Accuracy comparison of point forecasting.

Dataset DeepTCN DeepAR
electricity 50m 7h
traffic 30m 3h
parts 40s 5m

Table 6: Computation time comparison on public datasets.

4.3.3 Run-time efficiency. Finally, we demonstrate in Table 6 a
comparisonwith respect to run-time efficiency betweenDeepTCN
and DeepAR. Running times are obtained from the measurement
of an end-to-end evaluation on datasets electricity, traffic and
parts, including processing features, training the model, and pro-
ducing the corresponding results. ForDeepTCN, we show the run-
time result of TCN-Quantile. For DeepAR, we report the run-
ning time presented in [9]. Both models are trained on the same
GPU service Tesla P40. As shown in Table 6, DeepTCN, due to
its capability of performing the convolutions in parallel, has a clear
advantage on the run-time efficiency.

5 CONCLUSION
We present a convolutional-based probabilistic forecasting frame-
work formultiple related time series and showboth non-parametric
and parametric approaches to model the probabilistic distribution
based on neural networks. Our solution can help in the design of
practical large-scale forecasting applications, which involves situ-
ations such as cold-starts and data sparsity. Results from both in-
dustrial datasets and public datasets shows the framework yields
superior performance compared to other state-of-the-art methods
on both accuracy and efficiency.
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Appendices

A DATASET
(1) JD-demand.The JD-demand dataset is a collection of 50,000

time series of regional demand which involves around 6,000
products of 3C (short for communication, computer and
consumer electronics) category from seven regions of China.
The dataset is gathered from 2014-01-01 to 2018-12-01. The
features set for JD-demand includes historical demand and
the product-specific information (e.g., region_id, product cat-
egories, brand, the corresponding product price and promo-
tions).

(2) JD-shipment.The JD-shipment dataset includes about 1450
time series from 2014-10-01 to 2018-12-01, including new se-
ries (warehouses) that emerge with the development of the
companies’ business. The covariates consist of historical de-
mand, thewarehouse specific info including geographic and
metropolitan informations (e.g., geo_region, city) and ware-
house categories (e.g. food, fashion, appliances).

(3) Electricity. The electricity dataset describes the series of
the electricity consumption of 370 customers. The electric-
ity usage values are recorded per 15 minutes from 2011 to
2014. We select the data of the last three years. By aggregat-
ing the records of the same hour, we finally get the hourly
consumption data of size N ×T = 370× 26304, where N is
the number of time series and T is the length [36].

(4) Traffic. The traffic dataset describes the occupancy rates
(between 0 and 1) of 963 car lanes from San Francisco bay
area freeways. The measurements are carried out over the
period from 2008-01-01 to 2009-03-30 and are sampled ev-
ery 10 minutes. The original dataset was split into training
and test parts, and the daily order was shuffled. The total
datasets were merged and rearranged to make sure it fol-
lowed the calendar order. Hourly aggregation was applied
to obtain hourly traffic data [36]. Finally, we get the dataset
of size N × T = 963 × 10560, with the occupancy rates at
each station described by a time series of length 10, 560.

(5) Parts. The parts dataset includes 2,674 time series supplied
by a US car company, which represents the monthly sales
for slow-moving parts and covers a period of 51 months. Af-
ter applying two filtering rules as follows:
• Removing series possessing fewer than ten positivemonthly
demands.

• Removing series having no positive demand in the first
15 and final 15 months.

There are finally 1,046 time series left and a more detailed
description can be find in [13].

B BASELINES
Forecasting in industrial applications often relies on a combination
of univariate forecasting models and machine learning methods.

(1) SARIMAmodel is applied to JD-shipment dataset and fast-
moving products with historical data of length more than

14 in JD-demand dataset. The model is implemented with
Python’s package pmdarima [28] and the best parameters
are automatically select based on the criterion of minimiz-
ing the AICs [14]. The predictions at confidence level {10%,
90%} are taken as the probabilistic forecasts in our experi-
ments.

(2) XGBoost is also applied to both JD-demand dataset and
JD-sh
ipment dataset.The features for forecasting on JD-shipment
are presented in Table 7. A grid-search is used to find the
best values of parameters like learning rate, the depth-of-
tree based on the offline evaluation on data from both last
month and the same month of last year.

(3) JD-online. As mentioned before, the probabilistic results of
JD-online include two parts.The results of time series mod-
els like SARIMA are presented in the previous list. Gaussian
distribution assumption is taken to generate the probabilis-
tic forecasting for machine learning models. The bagging of
several models’ results is taken as the mean. The standard
deviation of residuals between predictions and ground truth
of last month’s data are taken as the forecasted deviation.
These two parts are re-bagged to produce final forecasts.

C EXPERIMENT DETAILS
The current model is implemented with Mxnet [7] and its new
high-level interface Gluon.We trained our model on aGPU server
with one Tesla P40 and 16 CPU (3.4 GHz). Multiple-GPU can be
applied to speed up and achieve better training efficiency in real
industrial application. The codes for pubiic datasets are released at
https://github.com/oneday88/kdd2019deepTCN.

For the JD.com’s datasets, the training range and prediction hori-
zon are both 31 days. We implement two models for both JD-
demand and JD-shipment datasets. One model is trained on the
data before Oct 2018 and produces forecasting on Oct 2018; the
other one is trained on the data before Nov 2018 and produces fore-
casting on Nov 2018.

For the parts dataset, we use the first 39 months as training data
and the last 12 months for evaluation. A rolling window approach
with window size =4 is adopted. The training and prediction range
are both 12 months and a rolling window approach with window
size 4 is adopted. For both electricity and traffic datasets, the train-
ing range and prediction range are selected as 168 hours and 24
hours respectively. For electricity dataset, we use only samples
taken in December of 2011, 2012 and 2013 as training data, as we
assume that this small data set is sufficient for the task of forecast-
ing electricity consumption during the last seven days of December
2014. For traffic dataset, we train models on all the data before last
seven days.

For each dataset, we fit the model on the training data and evalu-
ate the correspondingmetrics on the testing data after every epoch.
When the training process is complete, we pick the model that
gains the best evaluation results on the test set.
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Table 7: XGBoost feature lists

Feature type details
Category region_id, city_id, warehouse_type, holiday_indicators, is-weekend,etc

Stats of Warehouse level summary (mean,median) of last week and last two weeks, summary (median, SD) of last four weeks,etc
Stats of city level summary (mean,median) of last week and last two weeks, summary (median, SD) of last four weeks,etc

Stats of Warehouse-type level summary (mean,median) of last week and last two weeks, summary (median, SD) of last four weeks,etc

Table 8: TCN parameters

JD-demand JD-shipment electricity-quantile traffic parts
number of time series 50,000 1450 370 963 1406
input-output length 31-31 31-31 168-24 168-24 12-12

dilation-list [1,2,4,8] [1,2,4,8] [1,2,4,8,16,20,32] [1,2,4,8,16,20,32] [1,2]
number of training samples 200k 40k 30k 26k 4k

batch size 16 512 512 128 8
learning rate 1e-2 5e-2 5e-2 1e-2 1e-4

Convolution-related hyper-parameters, such as kernel size, num-
ber of channels and dilation length, are selected according to dif-
ferent tasks and datasets. The most important principle for choos-
ing kernel size and dilation length is to make sure that the en-
coder (stacked residual blocks) has sufficiently large receptive field,
namely long effective history of the time series. The number of
channels at each convolution layer is determined by the number
of input features and is kept fixed for all residual blocks. We man-
ually tune for each dataset training-related hyper-parameters, in-
cluding batch size and learning rate, in order to achieve the best
performance on both evaluation metrics and running time. Amore
detailed description of parameters is presented in Table 8.
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