
Enumerating Hub Motifs in Time Series
Based on the Matrix Profile

Genta Yoshimura
yoshimura.genta@aist.go.jp

National Institute of Advanced
Industrial Science and Technology

(AIST)
Tokyo, Japan

Mitsubishi Electric Corporation
Kamakura, Japan

Atsunori Kanemura
atsu-kan@aist.go.jp

National Institute of Advanced
Industrial Science and Technology

(AIST)
Tokyo, Japan
LeapMind Inc.
Tokyo, Japan

Hideki Asoh
h.asoh@aist.go.jp

National Institute of Advanced
Industrial Science and Technology

(AIST)
Tsukuba, Japan

ABSTRACT
A time series motif is loosely defined as a subsequence in time series
that occurs frequently, and the discovery of motifs often precedes
analyzing time series data. Algorithms for motif discovery have
been proposed with formal definitions of motifs, but they require
manual setting of a radius parameter R, which defines the radius
of motif clusters. Defining R assumes that subsequences belonging
to the same motif are spherically distributed; however, such an
assumption does not hold for many real-world datasets. Even if
the assumption were correct, adjusting R is not easy, and requir-
ing many trials and errors. In this paper, we propose a hub motif,
another formal definition of motif that does not assume the radius
parameter R, and develop an algorithm for finding hub motifs. The
proposed algorithm, HubFinder, successfully enumerates signifi-
cant motifs without exhaustive search of R by leveraging the matrix
profile, a recently proposed data structure for time series. Experi-
mental results show that HubFinder discovers useful motifs for a
synthetic toy example and also for two real datasets from medicine
and ergonomics.

CCS CONCEPTS
• Computing methodologies → Motif discovery; • Informa-
tion systems→ Top-k retrieval in databases; Summarization.

KEYWORDS
motif discovery, motif set discovery, motif enumeration, time series
data mining, matrix profile

ACM Reference Format:
Genta Yoshimura, Atsunori Kanemura, and Hideki Asoh. 2018. Enumerating
Hub Motifs in Time Series Based on the Matrix Profile. In MileTS ’19: 5th
KDD Workshop on Mining and Learning from Time Series, August 5th, 2019,
Anchorage, Alaska, USA. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Finding frequent patterns from time series is a fundamental tech-
nique for understanding and summarizing temporal structure in
time series data. To this end, J. Lin et al. [5] have proposed time se-
ries motif discovery, which finds representative subsequences called
motifs by selecting frequent patterns from all the subsequences
extracted from time series. We focus on the time series motif enu-
meration problem, which enumerates multiple motifs in order of
significance rather than finding a single motif, because in real ap-
plications time series usually include multiple patterns [1, 5, 9, 10].

There are at least two major issues in the existing time series
motif enumeration methods (as described in more detail in Sec-
tion 3.2):

(1) It is not easy to tune a radius parameter R, which defines the
radius (size) of motif clusters, because an appropriate value
is different for different datasets.

(2) Some datasets do not have a single radius that is appropriate
for all the motif clusters, and the existing methods fail to
enumerate motifs no matter how they tune the parameter R.

To solve these two issues, we defined a novel concept of time
series motifs called hub motifs and proposed a motif enumeration
method that does not assume the radius parameter R. Since the
proposed method does not have the R parameter, we do not need to
tune it like the existing methods [1, 5]. Moreover, it can find motifs
from differently-sized motif clusters, where the existing methods
often fail. The mechanism employed by the proposed method and
how it is beneficial will be introduced with an illustrating example
in Section 2.

Our main contributions are summarized as follows:

• We defined a novel concept of motifs, which we call hub
motifs (Section 3.3). It eliminates the assumption that subse-
quences form clusters of the same radius R.
• We extended the matrix profile [12, 13] to introduce the sub
matrix profile with an efficient algorithm for calculating it
(Section 3.4). It enables us to compute the importance of each
subsequence as hub motif efficiently.
• We proposed a novel motif enumeration algorithm, which
we call HubFinder (Section 3.5). It efficiently enumerates hub
motifs from time series without the parameter R based on
the sub matrix profile.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA G. Yoshimura, et al.

• We demonstrated that HubFinder outperforms the exist-
ing methods both quantitatively and qualitatively on three
datasets including real data (Section 4).

2 FUNDAMENTAL IDEA
We use Figure 1 to explain the fundamental idea behind the pro-
posed method. Let us assume that representative subsequences in a
time series are composed of two clusters, both of which are ellipti-
cally distributed (Figure 1(a)). The circles and triangles correspond
to the subsequences of the first and second clusters, respectively.

The existing methods [1, 5] find motifs by fitting spheres of
radius R without overlap (the orange spheres in Figure 1(b) and
(c)). The spheres are centered at the time series motifs (the orange
markers). As shown in Figure 1(b), the sphere includes not only
circles but also triangles wrongly even with the smallest radius R1
that covers all the subsequences from the first cluster. When R is
set smaller, we need to use many spheres to cover a single cluster,
which leads to the “discovery” of redundant motifs (Figure 1(c)). In
addition, there are some uncovered subsequences (the blue markers)
both in Figure 1(b) and (c).

The proposed method, HubFinder, finds motifs that are located
in the center of each cluster (the orange marker in Figure 1(d)). We
call the proposed motifs hub motifs because the extracted motifs
behave like hubs in the subsequences space.

HubFinder works as described below. It first computes distances
for all pairs of subsequences. Then it evaluates an importance of
each subsequence under the assumption that the smaller a sum of
the distances between a subsequence and the other subsequences is,
the more significant the subsequence is as the hub motif. HubFinder
finally enumerates subsequences as hub motifs in descending order
of the importance, which is accomplished by a greedy algorithm.

In other words, HubFinder finds a set of motifs so as to minimize
a sum of the distances between motifs and the other subsequences
(the orange line segments in Figure 1(d)). In this manner HubFinder
eliminates the need for the parameterR, and separates subsequences
into distinct two clusters successfully as shown in Figure 1(d).

3 METHOD
3.1 Preliminaries
This subsection defines important data types used heavily later
in this paper. A time series X is a sequence of V -dimensional real-
valued vectors xt : X = [x1,x2, . . . ,xT] ∈ RV×T , where T is the
length of X.

A subsequence Xi in a time series X is a consecutive subset of
X starting from position i: Xi = [xi ,xi+1, . . . ,xi+W −1] ∈ R

V×W

whereW is the subsequence length. As will be described later, time
series motif enumeration algorithms extract frequent local patterns
in time series as subsequences.

The all-subsequence set A of a time series X is an ordered set of
all possible subsequences obtained by sliding a window of length
W along X: A = {X1,X2, . . . ,XN }, where N = T −W + 1. Time
series motif enumeration algorithms return a representative subset
of A whose elements are typical local patterns in time series.

Next we introduce a metric defining a distance between each
pair of subsequences in order to discover similarity between subse-
quences. We assume that the distance is measured by the Euclidean

distance between z-normalized subsequences:

d(Xi ,Xj) =
(W −1∑
k=0
(x̃i+k − x̃ j+k)

2
)1/2
, (1)

where X̃i = [x̃i , x̃i+1, . . . , x̃i+W −1] is a z-normalized subsequence,
i.e. zero-mean and unit-variance. Although the Euclidean distance
is one of the simplest distances, extensive empirical comparisons [2]
have shown that the Euclidean distance is competitive with other
measures on various applications.

A distance profile Di ∈ R
N is a vector of the z-normalized Eu-

clidean distances between a given subsequence Xi and each subse-
quence in an all-subsequences setA. By definition, the i-th location
of Di is zero, and very close to zero around this location. We avoid
such “trivial matches” by ignoring an exclusion zone of length
⌊W /2⌋ before and after the location of the query subsequence.
Then the distance profile Di is redefined based on a non-trivial-
subsequences set Ai = A \Ni rather than the all-subsequences set
A, where Ni is a trivial matches set:

Ni = {Xj | i − ⌊W /2⌋ ≤ j ≤ i + ⌊W /2⌋}. (2)

A. Mueen et al. [11] have proposed the MASS algorithm, which
calculates the distance profile in only O(T logT) time. It utilizes
the classic Fast Fourier Transform (FFT) algorithm for efficient
computation.

Recent works [12, 13] have introduced the matrix profile, a data
structure that stores nearest neighbor information for every subse-
quence in a time series. It offers the solutions to various time series
mining tasks, including motif discovery and enumeration. Amatrix
profile P ∈ RN is a vector of the z-normalized Euclidean distance
between each subsequence Xi in the all-subsequences set A and
its nearest neighbor in the non-trivial-subsequences set Ai .

The i-th element in the matrix profile tells us the distance from
subsequenceXi to its nearest neighbor excluding its trivial matches.
However, it does not tell where that neighbor is located. This in-
formation is stored in a companion vector called the matrix profile
index. A matrix profile index I ∈ ZN is a vector of integers, which
stores the location of the nearest neighbor in Ai for each subse-
quence Xi .

There are some efficient algorithms for calculating thematrix pro-
file and matrix profile index such as STAMP [12] and STOMP/GPU-
STOMP [13]. We later leverage the STOMP algorithm in order to
enumerate representative motifs in time series efficiently.

3.2 Existing Motif Enumeration Methods
Before we introduce our proposed method, we review the existing
two motif enumeration methods, SetFinder and ScanMK, which are
used as baseline methods in our experiments. They are respectively
based on the two motif definitions, range motif and closest-pair
motif, which are introduced below.

Time series motifs are subsequences that occur frequently in a
time series [5]. There have been proposed several definitions of the
time series motifs [1, 5, 10], but they can be divided into two types
of definitions: range motif and closest-pair motif. The difference
of two definitions arises from how we regard a subsequence as
significant. For example, [10] distinguishes the two definitions by

Enumerating Hub Motifs in Time Series Based on the Matrix Profile MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA

(b)

R1

(c)
R2

(d)

Cluster 1

(a)

Cluster 2

Figure 1: Sketch of the proposedmethod: (a) Scatter plot of subsequences froma time series. The circles represent subsequences
belonging to the first cluster and the triangles are those belonging to the second cluster. (b) The existing methods with a large
radius R1. Some subsequences from another motif cluster (colored in red) are estimated to belong to a wrong cluster. (c) If we
use a small radius R2 (< R1), the existing methods discover redundant motifs. (d) The proposed method finds the two motifs
(colored in orange) that are located in the center of motif clusters successfully.

referring the former as the range motif (Definition 5) and the latter
as the subsequence motif (Definition 7).

The definition of the range motif is based on the idea that a sub-
sequence is significant if there exist many non-trivial-subsequences
within the sphere of radius R. Mathematically, a subsequence Xi
is more significant than Xk if and only if |R(Xi ,R)| > |R(Xk ,R)|,
where a range set

R(Xi ,R) = {Xj ∈ Ai | d(Xi ,Xj) ≤ R} (3)

consists of non-trivial-subsequences whose z-normalized Euclidean
distances from Xi are not greater than R. Then the range motif is
obtained by

argmax
Xk ∈A

|R(Xk ,R)|, (4)

which corresponds to the most dense spherical region with radius
R in subsequences space.

Unlike the range motif, the definition of the closest-pair mo-
tif is based on the idea that a subsequence is significant if the z-
normalized Euclidean distance to its closest non-trivial-subsequence
is small. More formally, a subsequence Xi is more significant than
Xk if and only if d(Xi ,Xj) < d(Xk ,Xl), for all Xj ∈ Ai and
Xl ∈ Ak . Therefore the closest-pair motif is obtained by

argmin
Xk ∈A

min
Xl ∈Ak

d(Xk ,Xl). (5)

Next we move onto enumerating multiple motifs rather than
finding a single motif. Although the above two types of motifs are
defined as a single motif, they can be easily extended to multiple
motifs using a sphere of radius R. k-motif X(k) ∈ A is the k-th
most significant subsequence in time series X, and the range set of
k-motif is k-motif cluster S(k) = R(X(k),R), which is also called k-
motif set as in [1]. If we follow the range motif definition, k-motif is
the subsequence which has the highest count of non-trivial matches
and satisfies that k-motif cluster S(k) does not overlap with the
previous (k − 1) motif clusters, S(l) for 1 ≤ l < k . This non-overlap
condition can be written as d(X(k),X(l)) > 2R for 1 ≤ l < k .

All existing fixed-lengthmotif enumerationmethods [1, 5] utilize
a sphere whose radius R is constant. They first find the 1-motif

X(1), the most significant motif among A according to each motif
definition. Then, they iteratively find the k-motif X(k), the k-th
significant motif from k-candidate set

C(k) =

k−1⋂
l=1
{Xi ∈ A | d(Xi ,X(l)) > 2R} (6)

until C(k) becomes empty. According to this manner, A. Bagnall
et al. [1] proposed SetFinder and ScanMK, which are respectively
based on the definition of range motif and closest-pair motif. The
detail of SetFinder and ScanMK are described in Algorithm 3 in
Appendix A.1 and Algorithm 4 in Appendix A.2 respectively.

The existing methods have two defects caused by the radius R.
First, it is not easy to adjust the parameter R because the appro-
priate parameter changes in accordance with the target dataset.
Unfortunately, most real applications of the motif discovery require
the unsupervised setting where true annotations are not available.
In this case we can not even know which R is appropriate, and
therefore it is impossible to tune R.

Second, to make matters worse, there are cases where the exist-
ing methods fail to enumerate motifs successfully no matter how
finely the parameter R is tuned. The motivating example in the
introduction section (Figure 1) sketches this situation. Later in the
experimental section, we will show that such a case can be easily
made and actually occurs in real datasets.

In order to solve these two problems, we define a novel time
series motif hub motif, and propose a novel motif enumeration
algorithm HubFinder, which works without the parameter R in the
following section.

3.3 Definition of Hub Motif
We first introduce an anchor set H ⊂ A, whose subsequences are
located at the local minima of the matrix profile P . Mathematically,
a subsequenceXi is an anchor, i.e.Xi ∈ H , if and only if P[i] ≤ P[j]
for all j ∈ Ni . Each anchor is regarded as the candidate of motifs
because the distance between an anchor and its closest subsequence
is shorter than any distances between its trivial matches and their
closest subsequences.

MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA G. Yoshimura, et al.

The definition of the hub motif is based on the idea that a subse-
quence is significant if a sum of z-normalized Euclidean distances to
anchors is small. Mathematically, a subsequence Xi is more signifi-
cant than Xk if and only if

∑
Xj ∈H d(Xi ,Xj) <

∑
Xj ∈H d(Xk ,Xj).

The hub motif is obtained by

argmin
Xk ∈A

∑
Xj ∈H

d(Xk ,Xj). (7)

It is called “hub” motif because it is located in the central part of
the anchors as in Figure 1(b).

Next, in order to enumerate multiple hub motifs without using
the radius R, we define a cost function f (B) for a set of subsequences
B ⊂ A:

f (B) =
∑

Xi ∈H

min
Xj ∈Ni ,Xk ∈B

d(Xj ,Xk) (8)

Our aim is to find a set of K hub motifs B(K) which minimizes the
cost function f (B) over the anchor setH :

B(K) = argmin
B⊂H s.t. |B |=K

f (B) (9)

In this paper, the search space is restricted toH instead of A, and
the maximum number of motifs K is set to K =W .

3.4 Sub Matrix Profile
In order to compute the cost function (8) efficiently, we introduce
a sub matrix profile. Sub matrix profile P (B) is a vector of the z-
normalized Euclidean distance between each subsequence Xi in a
set of subsequences B ⊂ A and its nearest neighbor in the non-
trivial-subsequences Ai .

The sub matrix profile can be computed efficiently along with
a sub matrix profile index I (B) ∈ ZN , which stores the location of
the nearest neighbor in B for each subsequence Xi . Algorithm 1
shows how to compute P (B) and I (B) for a tentative set of motifs
B. ElementWiseMin compares two vectors P and Di , and returns a
new vector containing the element-wise minima. This is almost the
same as STAMP algorithm [12] except that it computes the matrix
profile and matrix profile index on the subset B ⊂ A instead of the
all-subsequences set A.

Algorithm 1 SubMatrixProfile
Input: Tentative set of motifs B
Output:

Sub matrix profile P (B)

Sub matrix profile index I (B)
1: P ← ∞
2: I ← 0
3: for all Xi ∈ B do
4: P , I ← ElementWiseMin(P , I ,Di , i)
5: end for
6: return P , I

Using the obtained sub matrix profile, the cost function (8) can
be rewritten as

f (B) =
∑

Xi ∈H

min
Xj ∈Ni

P (B)[j], (10)

which can be computed efficiently than the original form.
In fact, the idea of the cost function and sub matrix profile was

inspired by the fast convergence property of STAMP algorithm. As
seen in Figure 5 of [12], the matrix profile converges very quickly
to its true value with the random order updates. This suggests that
only small fraction of the all-subsequences set A can approximate
the true matrix profile. The optimization problem (9) aims to find a
small subset of subsequences B whose sub matrix profile P (B) is
close to the matrix profile P around its local minima.

3.5 Proposed Method: HubFinder
For the hub motif definition, k-motif X(k) (k = 1, 2, . . . ,K) can be
obtained by sorting the subsequences in B(K) in order of signifi-
cance. X(1) corresponds to the most significant hub motif. k-motif
cluster S(k) is a set of subsequences which are related to the k-motif
X(k):

S(k) = {Xi ∈ H
(K) | d(Xi ,X(k)) < min

j,k
d(Xi ,X(j))}, (11)

whereH (K) ⊂ A corresponds to the local minima of the sub matrix
profile P (B) for B = {X(1),X(2), . . . ,X(K)}. Each subsequence in
S(k) is more close to the k-motif X(k) than the other motifs.

Our proposed method HubFinder (Algorithm 2) minimizes the
cost function (10) in greedy manner to enumerate the hub motifs
and hub motif clusters. It consists of three parts: (i) Refinement
(ii) Sorting and (iii) Association. It first extracts K candidate sub-
sequences of hub motifs, then sorts them in order of significance,
and finally associates each motif with its motif cluster.

In the refinement part, the distance profile Di is computed using
STOMP-based algorithm for each subsequenceXi , which is used for
detecting the position of anchorsH and the calculation of the sub
matrix profile P (B) and cost function f (B). SlidingWindow(X,W)
enumerates all-subsequences set A by sliding windows of length
W . STOMPSTEP(D j−1,X) computes D j from the previous distance
profile D j−1, which corresponds to each iteration of STOMP al-
gorithm. According to the line 14, subsequences located at local
minima of the matrix profile are detected as anchors. Then each
anchor Xi ∈ H is appended to the tentative set of motifs B. If the
number of subsequences in B exceedsK , the most insignificant sub-
sequence is removed from B. These procedures refine the anchor
setH to obtain K motifs efficiently.

In the sorting part, the refined K motifs Xi ∈ B are sorted in
order of significance. The most insignificant motif is removed from
B and appended to the ordered list of motifsM iteratively. The first
k motifs inM constitute B(k) for k ≤ K .

In the association part, K motifs are associated with motif clus-
ters. The motif clusters consist of the local minima of the sub matrix
profile P (B). Each subsequence in motif clusters is related to the
closest motif using the sub matrix profile index I (B).

4 EXPERIMENTAL RESULTS
We introduce the evaluation metrics for the motif enumeration task,
and then show experimental results with a synthetic toy example
and two real datasets from medicine and ergonomics.

Enumerating Hub Motifs in Time Series Based on the Matrix Profile MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA

Algorithm 2 HubFinder
Input:

Time series X
Subsequence lengthW
Number of motifs K

Output:
Ordered list of motifsM
Ordered list of motif clusters S

1: ### (i) Refine the anchors to extract motifs
2: A ← SlidingWindow(X,W)
3: B ← ∅
4: H ← ∅
5: D1 ← MASS(X1,X)
6: P ← ∞
7: for all Xi ∈ A do
8: for all Xj ∈ Ni do
9: if P[j] = ∞ then
10: D j ← STOMPSTEP(D j−1,X)
11: P[j] ← minD j
12: end if
13: end for
14: if P[i] ≤ P[j] for all j ∈ Ni then
15: H ← H ∪ {Xi }

16: end if
17: B ← B ∪ {Xi }

18: if |B| > K then
19: Xj ← argminXk ∈B f (B \ {Xk })

20: B ← B \ {Xj }

21: end if
22: end for
23: ### (ii) Sort the motifs in order of significance
24: for k = 1 to K do
25: Xi ← argminXj ∈B

f (B \ {Xj })

26: B ← B \ {Xi }

27: M[K − k + 1] ← Xi
28: end for
29: ### (iii) Associate the motifs with motif clusters
30: B ← {M[1],M[2], . . . ,M[K]}
31: for k = 1 to K do
32: S[k] ← ∅
33: end for
34: for all Xi ∈ A do
35: if Xi = argminXj ∈Ni

P (B)[j] then
36: k ← I (B)[i]
37: S[k] ← S[k] ∪ {Xi }

38: end if
39: end for
40: return M,S

We implemented the proposed HubFinder as well as the existing
methods, SetFinder and ScanMK. Python codes for all experiments
are available at https://github.com/intellygenta/HubFinder.

4.1 Evaluation metrics
The motif enumeration task is similar to the clustering task to some
extent. Their objectives are to find representative patterns within a
dataset in an unsupervised manner. Thus we adopt a metric for the
clustering task. Purity is one of the most popular metrics for the
clustering task:

Purity(Ω,Ψ) =
1∑
j |ψj |

∑
k

max
j
|ωk ∩ψj |, (12)

where Ω = (ω1,ω2, . . . ,ωK) is the set of clusters and Ψ =

(ψ1,ψ2, . . . ,ψL) is the set of actual clusters.
In our problem setting, both of the sets are the subset of the all-

subsequence set, i.e. ωk ⊂ A andψl ⊂ A. The set of clusters ωk is
written asωk = {Xi ∈ A | |i−j | <W , |i−j | < minXj′ ∈S

k′,k ′,k |i−

j ′ |),Xj ∈ S
(k)}. In other words, a subsequence Xi does not belong

to any set of clusters if it does not overlap with any subsequence
in motif clusters. Otherwise it belongs to k-th cluster ωk if its most
overlapping subsequence in motif clusters is one of S(k).

4.2 Synthetic data
We prepared two subsequences of lengthW = 32: the single-period
triangular and sine waves. Both subsequences were z-normalized
and synthesized into a univariate time series X. These two sub-
sequences were arranged alternately as shown in Figure 2. i .i .d .
Gaussian noise N(0,σ1) and N(0,σ2) were added on the trian-
gular and sine subsequences respectively. We set σ2 = 0.1 and
σ1 = σ2/2 = 0.05, and left space of lengthW /2 between subse-
quences, which were added i .i .d . Gaussian noise N(0, 1). Finally
the total length of the synthesized time series became T = 9616 by
repeating 100 times for both subsequences.

0 8 16 24 32

−1

0

1

Motif 1

0 8 16 24 32

−1

0

1

Motif 2

0 50 100 150 200

Time

−2.5

0.0

2.5
Synthesized time series

Figure 2: Two motifs and synthesized time series. (Top) The
blue and orange subsequences are the first and second sub-
sequences respectively. (Bottom) An example of the synthe-
sized time series. The blue and orange colored subsequences
show the true position of the motifs.

ScanMK, SetFinder, and HubFinder were used for enumerating
two motifs in the synthesized time series. The parameter of motif

MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA G. Yoshimura, et al.

lengthW was set to its actual valueW = 32 for each method. The
radius R for ScanMK and SetFinder was found from the candidates
{0.01, 0.02, . . . , 2.00} because it was not known in advance. The
number of motifs K for HubFinder was set to K = W = 32, but
arbitraryk < K motifs can be obtained because it returns an ordered
list of motifs which is sorted in order of significance.

Let us compare the purity between threemethods. Figure 3 shows
that HubFinder achieves 100% purity and outperforms ScanMK and
SetFinder when the number of motifs is fixed to the actual value
K = 2. The maximum purity of ScanMK is 58.5% for R∗ = 0.96, and
that of SetFinder is 69% for R∗ = 0.83. This means that the existing
methods can not achieve high purity no matter how finely you tune
the parameter R. Furthermore, the existing methods seem to be
sensitive to the parameter R and the “sweet spot” is restricted to a
narrow range of R.

0.5 1.0 1.5 2.0

Radius

0.0

0.2

0.4

0.6

0.8

1.0

P
u

ri
ty

ScanMK

SetFinder

HubFinder

Figure 3: Dependency of the purity on the radius R for K = 2.
The purity for HubFinder does not depend on R because
it does not need the parameter R. The optimal radii for
ScanMK and SetFinder are represented as circle markers.

Figure 4 shows that HubFinder achieves 100% purity for allK ≥ 2.
In contrast, although the purities for ScanMK and SetFinder grow
as K increases, they can never reach 100%. The performance curves
of the existing methods are interrupted in the middle because their
algorithms terminate there. Their break points differ depending on
R, which also implies that the existing methods are sensitive to the
radius R.

Extracted motifs can be checked in Figure 5. Each methods suc-
cessfully finds the triangular motif and its motif cluster (blue sub-
sequences). However, the existing methods fail to extract the sine
motif cluster, while HubFinder succeeds in capturing all of them
(orange subsequences).

Figure 6 shows the multi-dimentional scaling (MDS) plot, which
visualizes the similarity of the z-normalized subsequences of two
clusters in two dimensional subsequence space. The triangle and
circle markers represents the triangular and sine subsequences
respectively. It can be seen from the upper left figure that the
motif subsequences form two clusters. The variation of the sine

0 5 10 15 20 25 30

Number of motifs

0.0

0.2

0.4

0.6

0.8

1.0

P
u

ri
ty

ScanMK (radius = 0.96)

HubFinder

0 5 10 15 20 25 30

Number of motifs

0.0

0.2

0.4

0.6

0.8

1.0

P
u

ri
ty

SetFinder (radius = 0.83)

HubFinder

Figure 4: Dependency of the purity on K . The actual num-
ber of motifs is depicted as the vertical dotted line at K = 2.
HubFinder’s result is expressed as the green line for both fig-
ures. (Upper) ScanMK’s purity for the optimal radius R∗ =
0.96 is expressed as the blue dashed line, while the results
for other radii are depicted as gray lines. (Lower) SetFinder’s
purity for the optimal radius R∗ = 0.83 is expressed as the or-
ange dotted-dashed line.

cluster is twice as large as the triangular one as expected from the
experimental setting, σ2 = 2σ1.

For all methods each motif cluster is colored with the same
color, while unallocated subsequences are uncolored. The upper
right figure shows that HubFinder with K = 2 succeeds in finding
two motif clusters perfectly, whereas the lower two figures show
that ScanMK and SetFinder fail. When the parameter R is set to
the optimal value R∗ for the existing methods, they find a motif
cluster for the triangular subsequences (blue markers) as in the
lower figures, however, it also includes some sine subsequences.

In addition, motif clusters for the sine subsequences (colored
markers other than blue markers) are too small to capture the
entire cluster of the sine motif. This is because two clusters have
different variation and no fixed radius can capture both clusters
at the same time. The existing methods can never deal with such
datasets because they are built on the assumption that each motif

Enumerating Hub Motifs in Time Series Based on the Matrix Profile MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA

2000 2100 2200 2300 2400

−2.5

0.0

2.5

S
ca

n
M

K

2000 2100 2200 2300 2400

−2.5

0.0

2.5

S
et

F
in

d
er

2000 2100 2200 2300 2400

−2.5

0.0

2.5

H
u

b
F

in
d

er

Figure 5: Visualization of the extracted motifs and motif
clusters. The gray line is the original time series. The blue
subsequences belong to 1-motif or its motif cluster, while
the orange ones correspond to 2-motif.

Cluster 1

Cluster 2

HubFinder (number of motifs = 2)

ScanMK (radius = 0.96) SetFinder (radius = 0.83)

Figure 6: MDS plot of the z-normalized subsequences: (Up-
per left) The triangle and sine subsequences are plotted
as the triangle and circle markers respectively. (Upper
right) HubFinder with K = 2. (Lower left) ScanMK with the
optimal radius R∗ = 0.96. (Lower Right) SetFinder with the
optimal radius R∗ = 0.83.

cluster has the same radius. Although those findings are based on
a synthetic dataset, differently-sized clusters often appear in real
datasets, and a practical motif discovery needs to deal with it.

The running times of three methods are depicted in Figure 7.
The number of repetitions for the triangular and sine subsequences
was changed between {100, 200, . . . , 1000}, which leads to the time
series length T = {9616, 19216, . . . , 96016}. The average of 10 tri-
als for each length is shown in the figure. The experiments were

performed on an Intel Core i7-8700K CPU with 3.70GHz and 64GB
memory.

96
16

19
21

6

28
81

6

38
41

6

48
01

6

57
61

6

67
21

6

76
81

6

86
41

6

96
01

6

Time series length

0

1000

2000

3000

4000

5000

R
u

n
n

in
g

ti
m

e
[s

ec
]

ScanMK

SetFinder

HubFinder

Figure 7: Running times on the synthetic time series.

It turned out that HubFinder is faster than the existing methods
for large time series lengths. This is due to the time complexity
of HubFinder, which is O(T 2) with the aid of STOMP-based com-
putation, while that of the existing methods unstably grow with
O(T 2 logT). In addition, unlike the existing methods, HubFinder
does not need multiple trials for tuning the parameter R, which
reduces the total running time in real situations.

4.3 ECG data
MIT-BIH Arrhythmia Database1 contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings [8], which is published
on the PhysioNet [4].

We selected subject 106 because there are many premature ven-
tricular contractions (PVCs) in her data. According to the annota-
tions, it has 1507 normal beats and 520 PVCs. The upper signal, i.e.
the modified limb lead II (MLII) was used as a univariate input time
series. The motif length was set toW = 128 so as to capture the
broad QRS complex and the lack of P wave, which are the charas-
teristics of PVCs. The radius parameter for ScanMK and SetFinder
was changed among R = {0.1, 0.2, . . . , 10.0}.

Figure 8 is the purity evaluation results for three methods, when
the number of motifs is fixed to its actual number K = 2. It is
clear that HubFinder outperforms the existing methods for each
radius R: the purity of HubFinder is 99.4%, which is better than the
purity 83.4% of SetFinder with the optimal radius R∗ = 8.2, and
92.6% of ScanMK with R∗ = 6.4. Moreover, the existing methods
are sensitive to the parameter R as in the case with the synthetic
data (Figure 3).

1https://www.physionet.org/physiobank/database/mitdb/

MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA G. Yoshimura, et al.

0 2 4 6 8 10

Radius

0.0

0.2

0.4

0.6

0.8

1.0

P
u

ri
ty

ScanMK

SetFinder

HubFinder

Figure 8: Dependency of the purity on the radius R forK = 2.

4.4 Human motion data
MotionSense Dataset2 includes three dimensional accelerometer
time series of human motion [7]. A total of 24 subjects performed
six activities: downstairs, upstairs, walking, jogging, sitting, and
standing.

We applied ScanMK, SetFinder, and HubFinder for each subject
to find motifs and motif clusters in the human motion. Downstairs,
upstairs, walking, and jogging activities were chosen among the six
activities because the other two activities may have less movement
than these four activities. That is, the trial number 11, 12, 15 and
16 were selected and concatenated into a three dimensional time
series for each subject. The motif length was set toW = 64 and
the radius for ScanMK and SetFinder was changed among R =
{0.1, 0.2, . . . , 20.0}. For each subject the purity was computed for
K = 4, which is the true number of the activities.

Figure 9 shows that HubFinder outperforms the existingmethods,
where almost all markers are plotted on the top-left triangle region
except subject 5 for SetFinder.

We elaborate on the result for subject 5, where HubFinder loses
to SetFinder when K = 4. According to Figure 10, although the
purity of HubFinder forK = 4 is less than one of SetFinder, it finally
exceeds for K > 5. This may imply that she has more variation in
her action and the number of motifs K = 4 is not enough for her.

Figure 11 shows the position of the extracted motifs and motif
clusters of subject 23 for three methods. The existing methods ex-
tract two motifs from the same activity, while the proposed method
successfully finds motifs from all four activities. In addition, it is
interesting to note that HubFinder seems to capture the walking
activities at landings of stairs because the motif for the walking
activity also appears in the downstairs and upstairs activities.

5 DISCUSSION AND CONCLUSION
We proposed hubmotifs and developed an algorithm for finding hub
motifs, which gets rid of the radius parameter R in order to solve
the two issues in the existing motif enumeration methods (shown
2https://github.com/mmalekzadeh/motion-sense/

0.6 0.7 0.8 0.9 1.0

ScanMK/SetFinder purity

0.6

0.7

0.8

0.9

1.0

H
u

b
F

in
d

er
p

u
ri

ty

1

2

3

4

5

6

7
89

12

13

14

15

16

17
18 19

20

21

22

23

24
1

2

3

4

5

6

7
89

10 11
12

13

14

15

16

17
1819

20

21

22

23

24

ScanMK

SetFinder

Figure 9: Comparison of the purity between the existing
methods and HubFinder for K = 4. X-axis and y-axis are the
purity of the existing methods and HubFinder respectively.
The numbers nearby markers represent the number of sub-
jects.

0 5 10 15 20 25

Number of motifs

0.0

0.2

0.4

0.6

0.8

1.0

P
u

ri
ty

Subject 5

SetFinder (radius = 9.8)

HubFinder

Figure 10: Dependency of the purity of Subject 5 on the num-
ber of motifs.

in Section 1). Experimental results (such as Figures 3, 8, and 9) show
that the proposed HubFinder outperforms the existing methods for
all three experiments in terms of the quantitative evaluation metrics
of the purity. Unlike the existing methods, HubFinder enumerates
useful motifs for a synthetic toy example and also for two real
datasets without exhaustive search of R.

Enumerating Hub Motifs in Time Series Based on the Matrix Profile MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA

0 1000 2000 3000 4000 5000 6000 7000

4

3

2

1

S
ca

n
M

K

0 1000 2000 3000 4000 5000 6000 7000

4

3

2

1

S
et

F
in

d
er

0 1000 2000 3000 4000 5000 6000 7000

4

3

2

1

H
u

b
F

in
d

er

Figure 11: Extracted motifs and motif clusters of subject 23 for three methods. The vertical dotted lines separate different
activities. The downstairs, upstairs, walking, and jogging activities are lined up from left to right. The horizontal lines repre-
sent the extracted motifs, on which the position of motifs and motif clusters are depicted using the orange and blue circles
respectively.

Not only finding useful motifs without R, HubFinder has many
other advantages: HubFinder is scalable to time series length T
because its time complexity is O(T 2). This is better than the ex-
isting methods, whose time complexity is O(T 2 logT). In addition,
HubFinder is adaptive not only to univariate time series but also
to multivariate ones, as shown in Section 4.4. These properties are
useful in real applications because real time series often have large
length T or multiple sensors (V > 1). Furthermore, HubFinder is
incremental, which means that the tentative set of motifs B is up-
dated in incremental manner as shown in Algorithm 2. Therefore,
it can deal with the streaming data, which is also often the case
with real time series.

Finally we discuss future directions. HubFinder asks us to tune
the motif length parameterW . There are some motif discovery
methods which finds variable length motifs [3, 6, 9]. HubFinder
may be able to enumerate variable length motifs instead of the fixed
lengthW by applying the concepts of such methods.

Another direction is to utilize extracted motifs for other time
series mining tasks such as classification, forecasting, clustering,
segmentation, and anomaly detection. Various features can be ex-
tracted from the obtained hubmotifs, e.g. the number of occurrences
of each motif, the sequential order of motifs, the variation from
motif, and so on. We think these features are more abstract and
understandable than time series signal itself, therefore machine
learning models trained with them can be more generalized and
interpretable than the existing models.

ACKNOWLEDGMENTS
We are grateful to Dr.Keogh for providing access to the codes and
papers related to the matrix profile. We wish thank Dr.Mueen for
publishing the MASS code. We also would like to thank G.B. Moody,
R.G. Mark, M. Malekzadeh, R.G. Clegg, A. Cavallaro, and H. Haddadi
for providing valuable datasets, MIT-BIH Arrhythmia Database and

MotionSense Dataset. This study was supported in part by the
New Energy and Industrial Technology Development Organization
(NEDO), Japan.

REFERENCES
[1] Anthony Bagnall, Jon Hills, and Jason Lines. 2014. Finding Motif Sets in Time

Series. arXiv preprint arXiv:1407.3685 (2014).
[2] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn

Keogh. 2008. Querying and mining of time series data: Experimental comparison
of representations and distance measures. Proceedings of the VLDB Endowment 1,
2 (2008), 1542–1552.

[3] Yifeng Gao and Jessica Lin. 2018. Efficient Discovery of Variable-length Time
Series Motifs with Large Length Range inMillion Scale Time Series. arXiv preprint
arXiv:1802.04883 (2018).

[4] Ary L. Goldberger, Luis A. N. Amaral, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
Roger G. Mark, Joseph E. Mietus, George B. Moody, and H. Eugene Stanley. 2000.
PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research
Resource for Complex Physiologic Signals. Circulation 101, 23 (2000), e215–e220.

[5] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Pranav Patel. 2002. Finding
Motifs in Time Series. In SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). 53–68.

[6] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. 2018. Matrix
profile X: VALMOD—Scalable discovery of variable-length motifs in data series.
In ACM SIGMOD Conference on Management of Data (SIGMOD). 1053–1066.

[7] Mohammad Malekzadeh, Richard G Clegg, Andrea Cavallaro, and Hamed Had-
dadi. 2018. Protecting sensory data against sensitive inferences. In Workshop on
Privacy by Design in Distributed Systems (W-P2DS).

[8] George BMoody and Roger GMark. 2001. The impact of the MIT-BIH arrhythmia
database. IEEE Engineering in Medicine and Biology Magazine 20, 3 (2001), 45–50.

[9] Abdullah Mueen and Nikan Chavoshi. 2015. Enumeration of time series motifs
of all lengths. Knowledge and Information Systems 45, 1 (2015), 105–132.

[10] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon West-
over. 2009. Exact discovery of time series motifs. In SIAM International Conference
on Data Mining (SDM). 473–484.

[11] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy
Viswanathan, Chetan Gupta, and Eamonn Keogh. 2017. The Fastest Similar-
ity Search Algorithm for Time Series Subsequences under Euclidean Distance.
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.

[12] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh.
2016. Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View
that Includes Motifs, Discords and Shapelets. In Data Mining (ICDM), 2016 IEEE
16th International Conference on. IEEE, 1317–1322.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA G. Yoshimura, et al.

[13] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael
Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. 2016.
Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One
Hundred Million Barrier for Time Series Motifs and Joins. In Data Mining (ICDM),
2016 IEEE 16th International Conference on. IEEE, 739–748.

Enumerating Hub Motifs in Time Series Based on the Matrix Profile MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA

A EXISTING MOTIF ENUMERATION
ALGORITHMS

A.1 SetFinder
Algorithm 3 shows the detailed SetFinder algorithm. It consists of
two steps: It first counts the number of non-trivial-subsequences
within radius R for each subsequence in A, and then iteratively
finds motifs and corresponding motif clusters according to the
counts sorted in descending order. Sphere(Di ,R) returns R(Xi ,R)
by extracting Di ≤ R.

In this paper we utilized the MASS algorithm to speed up the
original SetFinder algorithm.

Algorithm 3 SetFinder
Input:

Time series X
Subsequence lengthW
Radius R

Output:
Ordered list of motifsM
Ordered list of motif clusters S

1: ### (i) Count the number of subsequences within radius R
2: A ← SlidingWindow(X,W)
3: for all Xi ∈ A do
4: Di ← MASS(Xi ,X)
5: U [i] ← |Sphere(Di ,R)|
6: end for
7: ### (ii) Find motifs and motif clusters in order of significance
8: k ← 1
9: C ← A
10: while |C| > 0 do
11: Xi ← argmaxXj ∈C

U [j]

12: if U [i] = 0 then
13: break
14: end if
15: Di ← MASS(Xi ,X)
16: M[k] ← Xi
17: S[k] ← Sphere(Di ,R)
18: k ← k + 1
19: C ← C \ ({Xi } ∪ Ni ∪ Sphere(Di , 2R))
20: end while
21: return M,S

A.2 ScanMK
Algorithm 4 depicts the detailed ScanMK algorithm. It iterates the
process of finding closest pairs and their matches, adding them to
a motif cluster and removing them and their trivial matches from
the candidate set after each iteration.

In this paper we modified the original algorithm by replacing
the MK algorithm with STAMP-based computation in order to find
the closest-pair motifs efficiently.

Algorithm 4 ScanMK
Input:

Time series X
Subsequence lengthW
Radius R

Output:
Ordered list of motifsM
Ordered list of motif clusters S

1: ### (i) Compute the closest-pair distances
2: A ← SlidingWindow(X,W)
3: P ← ∞
4: I ← 0
5: for all Xi ∈ A do
6: Di ← MASS(Xi ,X)
7: P , I ← ElementWiseMin(P , I ,Di , i)
8: end for
9: ### (ii) Find motifs and motif clusters in order of significance
10: k ← 1
11: C ← A
12: while |C| > 0 do
13: Xi ← argmaxXj ∈C

P[j]

14: if P[i] > R then
15: break
16: end if
17: j ← I [i]
18: Di ← MASS(Xi ,X)
19: Dj ← MASS(Xj ,X)
20: M[k] ← Xi
21: S[k] ← Sphere(Di ,R) ∩ Sphere(Dj ,R)
22: k ← k + 1
23: C ← C \ ({Xi } ∪ Ni ∪ Sphere(Di , 2R))
24: C ← C \ ({Xj } ∪ Nj ∪ Sphere(Dj , 2R))
25: end while
26: return M,S

	Abstract
	1 Introduction
	2 Fundamental idea
	3 Method
	3.1 Preliminaries
	3.2 Existing Motif Enumeration Methods
	3.3 Definition of Hub Motif
	3.4 Sub Matrix Profile
	3.5 Proposed Method: HubFinder

	4 Experimental Results
	4.1 Evaluation metrics
	4.2 Synthetic data
	4.3 ECG data
	4.4 Human motion data

	5 Discussion and Conclusion
	Acknowledgments
	References
	A Existing Motif Enumeration Algorithms
	A.1 SetFinder
	A.2 ScanMK

