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ABSTRACT
As a large social network platform with more than 100 million

daily active users, we have a large number of user engagement

metrics stored in Google Cloud in the form of time series, detecting

anomalies in such time series data in a robust fashion can give

meaningful insights and enable proper subsequent actions. In this

paper, we tackle this problem by transforming it into a multiple

testing problem in the statistical domain. We first use STL (seasonal

trend residual decomposition using Loess) to decompose the time-

series data, then we propose a novel empirical Bayes procedure for

online False Discovery Rate (FDR) control at any nominal level on

the residual terms. Our main contribution is the novel online FDR

control procedure that’s robust and fits nicely with our streaming

anomaly detection goal. Furthermore, our online FDR control proce-

dure is a powerful statistical tool for many other anomaly detection

algorithms since it can be directly applied on score functions or

error terms to determine proper threshold, which are oftentimes

empirically determined based on training data in the literature. R

code for reproducing the results in the paper is provided in links
hidden for double blind review.
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1 INTRODUCTION
In many modern Internet companies, there is an exponential in-

crease in the availability of streaming, time-series data. Among

these data-sets, the most important ones are the user engagement

metrics (active users, session length, session frequency, etc.), which

are key indicators for company performances, external events, and

potential infrastructure outages. Therefore, fast and reliable detec-

tion of anomalies in such streaming time series data has significant

implications and use cases.

There are numerous research in time-series anomaly detection,

dating back to [16]. A lot of them has been done in various do-

mains such as, statistics, signal processing, finance, econometric,

etc [5, 21, 23, 40]. Many techniques are supervised methods, which

are unsuitable for robust anomaly detection since they hardly detect

new and unknown anomalies [19]. Other techniques, like smooth-

ing methods, clustering, simple thresholding methods, are only

capable of detecting spatial anomalies [3]. For detecting temporal

anomalies, change point detection methods using scan statistics and

likelihood ratio tests have been employed in the field of genomics,

engineering, and material science [7, 20, 31, 35]. Such methods are

often sensitive to the size of the windows and pre-specified thresh-

olds [3], making it difficult to control the number of false positives

while maintaining good detection power.

At our company, most of the streaming time series data demon-

strate strong seasonality with an underlying trend. In [22], they

propose a hybrid approach using STL (seasonal trend decomposi-

tion using Loess) and the Extreme Studentized Deviate test (ESD),

which is robust to high percentage of anomalies and can elect arbi-

trary number of anomalies for rejection. However, their Seasonal

ESD and Seasonal Hybrid ESD methods do not provide any control

on the false discovery rate
1
or offer any power analysis, which is

of utmost importance considering the vast amount of data being

processed and potential augmented number of false positives due

to the statistical artifact known as "multiple testing"
2
.

Considering the aforementioned issues, we develop a novel on-

line FDR procedure for real time anomaly detection for such user

engagement metrics at our company. The proposed framework is

fully data-driven, and can control FDR in an online fashion with

superior power.

1
https://en.wikipedia.org/wiki/False_discovery_rate

2
https://en.wikipedia.org/wiki/Multiple_comparisons_problem

https://github.com/wangweinan/Anomaly_Detection
https://github.com/wangweinan/Anomaly_Detection
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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Figure 1: An example time series data after STL decomposition. Y-axis is rescaled in order not to show the absolute numbers.

Specifically, we first use STL to decompose the time series data

into three components: seasonal, trend, and residuals. Then we

model the residuals as a two group mixture model with noise and

signals, a novel data-driven procedure is subsequently applied for

online adaptive FDR control. We summarise our main contributions

as follows:

• Formulate anomaly detection on time series as a multiple

testing problem.

• Propose a novel data-driven online FDR control procedure

with empirically investigated strong performances.

• Propose novel and robust non-parametric estimation meth-

ods for the test statistics.

• Provides a practical paradigm for mitigating false discoveries

of many anomaly detection algorithms that involve binary

decision making on score functions.

2 THEORETICAL FRAMEWORK
In this section, we first introduce the STL decomposition for ex-

tracting the residual component, and subsequently formulate the

anomaly detection problem on time series as a multiple testing

problem. Then we propose a novel online FDR control procedure.

Subsequently, we discuss data-driven estimation methods.

2.1 STL decomposition
STL is a non-parametric technique coined by [13] to deal with time

series data of such type. It decomposes a time series into three

additive components- seasonal, trend and remainder :

Yt = Tt + St + Rt , t = 1, · · · ,N . (1)

N here is the total number of measured data points. The main moti-

vation for using STL is that we want to leave the potential anomaly

points in the residual for further analysis, while providing useful

insights on the trend and seasonality terms. For the algorithmic

details, readers can refer to the outline delineated in [17].

The main quantity of interest is the residual term, which we

would now consider a mixture of random noise and anomalies

which cannot be accounted for in the seasonal or trend components.

There are many techniques in the literature for time series de-

composition, we chose STL because of its versatility and robustness,

especially towards outliers. Figure 1 is an example of time series

data after STL decomposition.

2.2 Multiple testing formulation and online
FDR control

After decomposing the original time series data, we want to further

analyze the residual terms for anomaly points. The quantity of

interest is the residual term Rt from the STL decomposition. With

anomalies present, the residual terms Rt can be thought of as a mix-

ture of two groups, the noise and potential signals (i.e. anomalies).

Specifically, let θ1, · · · ,θN be independent Bernoulli(pt ) variables
and let Rt be generated as

Rt |θt ∼ (1 − θt )F0 + θt F1t , t = 1, · · · ,N . (2)

Rt are observed, while the variables θt are unobserved. Here F0 is
the cumulative distribution function (cdf.) for the noise, and F1t
the cdf. for the signals at time t . Then the marginal cdf. of Rt is the
mixture distribution Ft (r ) = (1 − pt )F0(r ) + pt F1t (r ), and the prob-

ability distribution function (pdf.) is ft (r ) = (1−pt )f0(r )+pt f1t (r ).
Here pt can also be thought of as the varying signal proportions.

Note here in our formulation, we allow pt and f1t to vary with

time, allowing more general cases.

Under such framework, the anomaly detection problem can be

further cast as a multiple testing problem, when the end goal is to

determine which time points are from the alternative distribution,

i.e. anomalies:

H0t : θt = 0, H1t : θt , 0, t = 1, · · · ,N , (3)

where the solution to which can be represented by a decision rule,

δδδ = (δ1, · · · ,δN ) ∈ I = {0, 1}N . (4)

For each time point t , define δ t = (δ1,δ2, · · · ,δt ) be the collection
of all decisions up until time t , we aim to control false discovery

rate at time t as

FDRt (δ
t ) = E

(∑t
i=1(1 − θi )δi∑t
i=1 δi ∨ 1

)
≤ α .

By novelly formulating anomaly detection as an online FDR con-

trolled multiple testing problem, we simultaneously deal with an

array of issues where traditional methods fail to address.
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Firstly, simple thresholding is the common procedure for many

anomaly detection algorithms based on some sort of statistics or

score functions. The thresholds are often determined based on

development set for supervised methods or ad-hoc values for un-

supervised methods, which do not provide any theoretical guaran-

tee on the controlled FDR level. Our formulation can be applied

on a series of anomaly detection algorithms where FDR control

is appropriate, and thresholds would be chosen in a data-driven

fashion based on the desired significance level α .
Secondly, online FDR control ensures the safety and stability of

our decisions at any time. Most existing methods can only address

the globally controlled number of false discoveries.

2.3 Streaming online FDR Control procedure
In large-scale statistical inference, FDR control has become the

standard practice [4, 8, 11, 34]. They can be further categorized into

two groups of methodologies, p-value based and empirical Bayes
3

type methods. In general, p-value based techniques are inferior

compared with empirical Bayes type methods because it fails to

take into consideration the compound structure of the problem

[11, 34, 39], whereas the multiplicity can be used to improve power

over traditional tests, especially given the high dimensionality of

most anomaly detection problems in real time streaming data.

The seminal work by [34] propose the adaptive z-procedure,
an empirical Bayes type method that demonstrates stability and

robustness under the offline setting. It involves calculating the Lfdr

(local false discovery rate) statistics and choose a cutoff along the

ranked Lfdrs to control FDR.

However, the adaptive z-procedure assumes a fixed proportion of

anomalies p and alternative distribution f1, and it involves ranking

all the observations which is not feasible in a streaming setting

at our company. Therefore, controlling FDRt at any time t is the
natural solution for real time anomaly detection.

This online streaming setting imposes two new constraints.

Firstly, we cannot revise decisions that’s already made on past

data points. Secondly, it prohibits ranking test statistics which is

how typical multiple testing procedures exploit the global structure.

In order to address these issues, we propose the following novel

online FDR control procedure.

In order to accommodate varying anomaly proportion pt and ft ,
consider the following conditional Lfdr statistic:

CLfdrt = P(θt = 0|Rt = rt ) =
(1 − pt )f0(rt )

ft (rt )
, t = 1, · · · ,N .

LetAt = {i : i ≤ t ,δi = 1} be the collection of locationswe rejected

up until time t ,α be the nominal FDR level, then the following oracle

procedure denoted asdddOR
on

would guarantee control of the FDRt for

all t :

(1) Initialization: A0 = ∅.

(2) Decision: δt = I
(∑

i∈At−1 CLfdri+CLfdrt

|At−1 |+1
≤ α

)
.

The proof of oracle procedure’s validity is in the appendix.

3
https://en.wikipedia.org/wiki/Empirical_Bayes_method

3 IMPLEMENTATION AND ESTIMATION
METHODS

In order to practically implement the STL and data-driven online

FDR procedure for streaming time series, we need to specify the

parameters for STL and the estimation methods for key quantities

in the CLfdr test statistics, together with how to enable real time

decisionmaking.We devote this section to practical implementation

setup and bring forth novel estimation methods.

3.1 Parameters for STL decomposition
For STL decomposition, There are six primary parameters involved:

• n(p)n(p)n(p): the periodicity of the seasonality, e.g., if we were to

model daily data with 10 minutes intervals, n(p) = 60/10 ×

24 × 7.

• n(i)n(i)n(i), n(o)n(o)n(o): number of cycles through the inner and outer

loop.

• n(l )n(l )n(l ): the span in lags for the LPF. It’s recommended to take

the next odd integer greater than n(p).
• n(s)n(s)n(s), n(t )n(t )n(t ): smoothing parameter for the seasonal filter and

the trend behavior.

In practice, the most important two parameters are n(p) and
n(s), we recommend choosing n(p) based on total number of data

points in a week while let n(s) be relatively large, say 35, therefore

believing the changes are resulted from aberrant behaviors (in the

residuals) instead of seasonal behaviors.

Using simulated data, we further noticed that by letting the

number of inner and outer iterations both equal to 2 yields more

stable results than default values.

For real time prediction, we can use the method predict in R on

our fitted STL model, then use the difference of the observed value

and the fitted value as the residuals.

3.2 Estimations in the online FDR procedure
The oracle statistics in our online FDR procedure is the conditional

local false discovery rate CLfdr:

CLfdrt =
(1 − pt )f0(zt )

ft (zt )
, t = 1, · · · ,N . (5)

pt here can be interpreted as the proportion of anomalies among

observations until time t , which intrinsically should be small, while

f0(zt ) is the null distribution of the noises. After standardizing the

observations Rt into z-scores zt , we can either use the theoretical

null distributionN (0, 1) as f0, or we can use the method proposed in

[27] to obtain consistent estimators for
ˆf0 = N (µ̂0, σ̂

2

0
) (the empirical

null distribution) using empirical characteristic function and Fourier

analysis. We suggest the usage of the empirical null distribution

for online anomaly detection as we can update the parameters

periodically.

In this section, we propose a novel estimator for the test statistics�
CLfdrt .

Proposition 3.1 (�CLfdrt estimation). At time t ,

• calculate thep-values forRi , i = 1, · · · , t as P1i , obtain sample
Tt (τ ) = {i : P1i > τ }, a rule of thumb for τ here is 0.8.

https://en.wikipedia.org/wiki/Empirical_Bayes_method
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• use standard bivariate density estimator to estimate f (zt , t),
record bandwidth for zt terms as h1, bandwidth for t terms as
h2, bandwidths are chosen based on [33].

• apply kernel smoothing to Tt (τ ): q̂τt :=

∑
i∈Tt (τ ) Kh2 (t−i)

t (1−τ ) ,

• estimate �CLfdrt : �CLfdrt = q̂τt ˆf0(zt )
ˆf (zt ,t )

∧ 1.

By using time t as covariate, we can improve the power of the

CLfdr test statistics. We are assuming pt as a continuous function
of time t , which is natural.

One caveat of the above estimation is the initial “burn-in” pe-

riod when we simply do not have enough data to construct a large

enough Tt (τ ) for kernel smoothing. Alternatively, during such pe-

riod, one can omit the estimation of p̂t for simplicity, since

CLfdrt =
(1 − pt )f0(zt )

ft (zt )
<

f0(zt )

ft (zt )
, t = 1, · · · ,N ,

providing conservative control of the FDRt under nominal level α .
Note here the estimations involved in the online FDR procedure

are all non-parametric and data-driven, which means minimum

user-specifications and theoretical guarantee of consistency.

3.3 Real time anomaly detection algorithm
Now we summarize the implementation details into the following

algorithm.

online FDR procedure
(1) Specify n(p) and n(s) for STL decomposition, get the trend

Ti , seasonal Si and residual Ri .
(2) Standardize the residuals Ri into z-scores zi , then estimate

the null distribution N (µ̂0, σ̂
2

0
).

(3) Use method delineated in Proposition 3.1 to estimate
�
CLfdrt .

(4) Let

δt = I

(∑
i ∈At−1

�
CLfdri + �

CLfdrt

|At−1 | + 1
≤ α

)
, t = 1, · · · ,

4 EXPERIMENTAL RESULTS
In this section, we apply our method on real user engagement

metrics at our company. We demonstrate two cases to showcase

the power of our real-time anomaly detection algorithm, nominal

FDR level is α = 0.01. The X-axis and Y-axis in our plots are hidden

intentionally for privacy concerns.

We run TW as well for comparison (significance level 0.01),

are the anomaly points labeled by our data-driven procedure, while

△ are the points labeled by TW.

In the first use case, we are able to detect the spikes in March,

2018 due to a student walk out, while TW failed to.

Figure 2: Detected anomalies on user engagement metrics in March,
2018.

In the second use case, our algorithm also picked up an anomaly

triggered by a soccer game in Paris in February, 2018.

Figure 3: Detected anomalies on user engagement metrics in Febru-
ary and March, 2018.

5 LITERATURE REVIEW
In this section we briefly review relevant work done in anomaly

detection, specifically for time series data together with an review

of FDR control in the statistics literature and the idea of online FDR

control.

5.1 Anomaly Detection in Time Series
Anomaly detection can be categorized into two types, supervised

or semi-supervised methods where some labels of anomalies are

known, and unsupervised techniques where only the internal struc-

tures of the data are used for modeling normal baselines.

While labeled data can be helpful in predicting known type of

anomalies, they are typically unsuitable for predicting new types

of anomalies [19]. Some of the most notable supervised methods

include clustering analysis [6, 25, 30], isolation forests [14, 28],

classifiers using artificial neural networks [10, 29]. Most of these

techniques often are most effective when there are many additional

features.

Other unsupervised technique includes simple thresholds, change

point detection, time series analysis, principal component analysis,

etc. For instances, Netflix employs the Robust PCA approach to

decompose multivariate time series into a sparse and low-rank com-

ponent [12], whereas the sparse part can be deemed as anomalies.

The Skyline project also provides an ensemble technique for stream-

ing data anomaly detection at Etsy. Numenta uses the Hierarchical

Temporal Memory (HTM) for anomaly detection which can adapt

to changing statistics [2, 3]. [36] focuses on detecting efficiency

regression in performance metrics. Most recently, [24] proposed a

LSTM based approach on detecting spacecraft anomalies.

5.2 FDR Control
In large-scale multiple comparisons problems, the goal is to effec-

tively separate the non-null cases (in our case, anomalies) from the

null cases. The well-known step-up procedure of Benjamini and

Hochberg [8] aims to maximize the number of true positives while

controlling the proportion of false positives among all rejections, i.e.

FDR. Other notable methods include the adaptive procedure that

takes the proportion of signals into consideration [9], the plug-in

procedure [18], and the augmentation procedure [38].

However, such p-value based methods are typically inefficient

under the compound decision theoretic setting [34]. Sun and Cai in

[34] further propose an empirical Bayes method named adaptive-z
procedure, which ranks the Lfdr (local false discovery rate) statistics

and choose the cutoff. Recent advancement in the FDR literature
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also includes the knockoff procedure [4], which is robust to many

dependent cases.

Empirical Bayes type procedures use the posterior probability

as the primary test statistic. Under the assumption that all tests are

independent, the adaptive z-procedure in [34] takes into considera-

tion of the global signal proportion and the mixture distribution,

providing additional power. Along the line of the adaptive-z proce-
dure, [11] propose the CARS procedure which utilizes an auxiliary

statistics constructed from the original data for power gain.

5.3 Online FDR Control
Under the online constraint, multiple testing problems deal with

hypotheses that arrive in a stream, whereas decisions must be made

immediately after they arrive. Online FDR control deals with the

problem on how to control FDR at any given time under the nominal

level while maintaining consistency for all decisions made up until

the current time.

[15] designed the first online α-investing procedures that can

control mFDR (marginal false discovery rate) dynamically. [1] ex-

tended the α-investing idea to a more generalized class (GAI) which

controls the mFDR as well. [26] propose the LORD and LOND al-

gorithms, which are two special cases of GAI methods. [32] further

proposed the GAI++ methods, which uniformly improve the power

of GAI methods and can deal with more general cases.
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A PROOFS
TheoremA.1 (Validity). The oracle online FDR procedure is valid

for FDRt , t = 1, · · · ,N control, i.e.

FDRt (dddORon ) ≤ α , t = 1, · · · ,N .

http://www.gardner.fyi/blog/STL-Part-II/
http://www.gardner.fyi/blog/STL-Part-II/
https://doi.org/10.1214/12-AOAS539
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Figure 4: Simulation Setting 1, varying effect size with p = 0.05, i.i.d. random noise.

Proof. ∀t ,

FDRt = E

(∑t
i=1(1 − θi )δi∑t
i=1 δi ∨ 1

)
=
E

{
E

(∑t
i=1 (1 − θi )δi |Ri

)}
|At |

=
E

{∑
i ∈At CLfdri

}
|At |

≤ α .

□

B SIMULATIONS
B.1 Comparison with Twitter’s method
In this section, we simulate data with known anomaly data points

that has seasonal patterns to demonstrate the performance of our

proposed real-time anomaly detection algorithm. We compare the

oracle and data-driven version of our algorithm (denoted by OR
and DD respectively), together with anomaly detection algorithm

in [37] (denoted by TW). Note that TW uses simple thresholding on

test statistics, which cannot guarantee FDR control even globally,

let alone anytime FDR control. We consider setting with anomalies

demonstrating different signal strengths, auto-correlated errors,

and different proportion of anomalies.

We use real user engagement metric data at Snap Inc. to ex-

tract seasonal and trend data, and manually add in anomalies with

varying structures and effect sizes. We add in random noises with

distribution N (0,σ 2

0
) where σ0 = 144 based on our sample data.

In general, we consider total number of observationsm = 4458,

we continuously monitor FDRt at t = 600, 1000, · · · , 4200 with

step-size 400. FDRt and MDRt (missed discovery rate at time t )
are plotted for comparison. In order to make comparisons more

meaningful, we choose α = 0.1 for universal nominal FDR level for

our DD and OR procedures, and choose significance level 0.001 for

TW. Note MDRt is defined as:

MDRt = E

(∑t
i=1 θi (1 − δi )∑t
i=1 θi ∨ 1

)
, t = 1, · · · ,

Power is further defined as 1 −MDR. Under the same realized FDR

level, lower MDR level means more powerful procedure.

Specifically ,we consider the following settings, the correspond-

ing results are summarized in Figure 4 to 6:

• Setting 1: Vary signal’s effect size (fixed) µ from 3.5σ0 to
4.5σ0, proportion of signals pt linearly vary from 0.01 to

p = 0.05, error terms are i.i.d. N (0,σ 2

0
) where σ0 = 144,

signal locations are uniformly sampled based on binom(pt ).
4

• Setting 2: Signal’s effect size are uniformly sampled from

±3.5σ0 to ±5σ0, linearly vary proportion of signals pt from
0.01 to p = 0.02, 0.03, 0.05, error terms are i.i.d. N (0,σ 2

0
)

where σ0 = 144, signal locations are uniformly sampled

based on binom(pt ).
• Setting 3: Signal’s effect size are uniformly sampled from

±3.5σ0 to ±5σ0, linearly vary proportion of signals pt from
0.01 to p = 0.02, 0.03, 0.05, error terms are generated from

ARIMA model of order (2, 0, 1) with sd≈ 144 (the ARIMA

model is based on estimation from real data at Snap Inc.),

signal locations are uniformly sampled based on binom(pt ).

Our real-time anomaly detection algorithm can always control

the FDR level below the nominal level α = 0.1 at any time under

4
the size of σ0 is based on empirical null distribution estimation from the real data at

Snap Inc.
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all three settings, and it adheres closely to the oracle case where all

parameters in the model are assumed to be known. The anomaly

detection algorithm in [37] performs reasonably well too, however,

there’s no direct relationship between the significance level (0.001

here) specified with the realized FDR level. Furthermore, TW fails to

control FDR in an online fashion in setting 1 and seems to be overly

restrictive in other settings. Our data-driven procedure uniformly

achieves better power (lower MDR level) under various anomaly

effect sizes and proportions, even when errors are correlated. Fur-

thermore, our procedure is fully data-driven and can achieve more

precise error control as more data becomes available over time.
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Figure 5: Simulation Setting 2, varying proportion of ignals with uniformly distributed signal strengths, i.i.d. random oise.
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Figure 6: Simulation Setting 3, varying proportion of signals with uniformly distributed signal strengths, noise generated fromARIMA(2, 0, 1).
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