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ABSTRACT use transfer learning to bring human classification into the squats

In this paper, we’d like to disseminate a positive, serendipitous result
entailing deep time-series transfer learning in the domain of human
kinematics. We begin with a convolutional neural network model
pre-trained to classify human subjects based on bipedal gait data
emanating from tri-axial accelerometric sensors on commercial
smartphones. We then use this model to transfer-learn into the
problem domain of classifying subjects using tri-axial gyroscopic
data emanating from a commercial motion-sensor device mapping
to the activity of body-weight squats (of vividly different temporal
spans). We achieve 87% top-1 accuracy on a 20-class problem even
with a 60-40 train-test split. We hope that this cross-sensor, cross-
device and cross-activity transfer learning success will pave the way
for widespread deployment of deep transfer learning techniques in
the domain of human kinematics analysis.
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1 INTRODUCTION

Performing longitudinal studies of a cohort of athletes or patients
becomes challenging, especially when they share the same med-
ical equipment or sensors. Currently, it is being done manually
via careful registration and tracking. In this paper, we address this
challenge by performing machine-learning-aided automated classi-
fication of the cohort members by harnessing deep transfer learning.
Researchers have enjoyed a lot of success recently in identifying
humans at a large scale by performing deep learning on accelero-
metric gait data such as the data found in GaitNet (See [7, 8, 10]).
Using these gait-trained model(s), we sought to discover if we can
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domain.

1.1 Background on Gait and Squat analyses

Studies that analyze gait and other human motion generally rely
on video capture or inertial measurement unit (IMU) sensors [1, 7].
IMU sensors, like the one used in this study, have accelerometers
and gyroscopes as well as additional sensors such as magnetome-
ters, depending on the model. Smartphones have also been used
as IMU sensors due to the fact that they have accelerometers and
usually gyroscopes as well. In fact, the accelerometric gait data
used to capture the data found in GaitNet was from smartphones
[7]. IMU sensors have also been used previously with squat data in
particular.

Physiotherapists and fitness coaches both work on squat mechanics
with their athletes and patients, agreeing for the most part on what
a "correct” squat should look like. They can also recognize common
incorrect squats, or deviations, in their clients. Both professions
often deal with groups, which makes real-time feedback more diffi-
cult, and athletes/clients also perform these exercises when alone.
To this end, researchers used IMU sensors to help classify these
movements [5]. After standardizing the correct squat form and
some deviations, the researchers had different people do the same
mechanics for each variation and achieved a multiclass model accu-
racy of 56.55% - finding the squat variation amongst the data. Prior
to our work, to the best of our knowledge, no one has seen if a
model could instead find the person amongst the data. We wanted
to see if the model could locate common artifacts across all of a
user’s squat variations - artifacts that were unique to just one per-
son. By achieving this goal, the model could assist physiotherapists
and coaches by automatically identifying the user from a group of
clients or athletes.

1.2 Transfer learning: The ImageNet to GaitNet
analogy

As evinced in [5],[2],[3], the landscape of machine learning clas-
sification algorithms in the context of sensor-data driven human
kinematics analysis is dominated by shallow learning algorithms
entailing hand-crafted time and frequency domain feature engi-
neering. One reason why deep learning techniques might not be as
prevalent here is the lack of large volume of human kinematics sen-
sor data to train the deep-net on. In the domain of computer-vision,
this issue is circumvented by using transfer learning techniques
that require small amount of domain-specific data to fine-tune a
pre-trained model which was trained on a larger general purpose
dataset such as ImageNet (See [9] for a survey of the field). In this
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paper, we disseminate the first results in the motion-sensor based
himan kinematics time-series domain, where we showcase how
we can use a pre-trained model- DeepGaitID - trained on GaitNet
(analogous to ImageNet in computer vision) and transfer not just
into other niche problem domain but also across different sensors
(accelerometer to gyroscope). In addition to the high classification
accuracy that we finally achieve and the low amount of training data
required, there is one other facet of our results that was especially
noteworthy. While the gait models were trained on real-world tri-
axial accelerometric gait data emanating from the IMU sensors in
commercial smartphones, the gyroscopic squat data was collected
using an off-the-shelf IMU sensor device metamotionr!. Thus, the
transfer learning is happening across different kinematic and sensor
modalities at once.
The main contributions of the paper are as follows:

(1) Introduce a new tri-axial gyroscopic dataset (Squat-29) for
the time-series community

(2) Disseminate the first ever research effort to identify humans
on the basis of their squatting motion

(3) Successfully showcase deep transfer learning across two dif-
ferent modalities of human motion - bipedal gait and body-
weight squats

(4) Open source the data and code associated with the experi-
ments

In Section 2, we present the dataset collection procedure as well
as detailed explanations into the type of data collected. Then in
Section 3, we present the transfer learning procedure and results.
Finally in Section 4, we conclude the paper and cover some of the
directions in which we are currently extending this work.

2 SQUAT-20: DATASET DESCRIPTION

The data collected from participants was in the form of bodyweight
squats, which are squats that are performed without any equipment
(no extra weight). We asked the volunteers to do eight different
variations of a squat: "correct” squats - those done with proper
mechanics - as well as seven popular deviations (which we hope
to use as a further classification environment in the future). The
variation of squat movements performed can be seen in Table 1
along with the corresponding squat form ID used in the data.
Because there was not a constraint on squat experience, we
noticed that some participants’ data was more "noisy" than others.
Visually, this noise was discernible to the trainer on-site as the more
amateur participants, though accurately performing the squat with
the instructed mechanics, often hesitated in their movements. These
hesitation marks presented a challenge to classifying squat form
using traditional batch classification algorithms as the unique squat
form characteristics appeared to be harder to discern. We open up
this dataset for outside exploration, and we will also continue our
own exploration into joint user-ID and squat form classification.
This noise, however, did not hinder participant-based classification.

2.1 Squat Form and Deviations

A correct squat is one that maximizes power efficiency through a
person’s global and local centers of gravity. As one deviates away
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Squat Form Variations

SquatFormID  Description

Correct

Knees pass over toes

Knees move towards each other
Knees move away from each other
Heels up during movement

Hips shift to the left

Hips shift to the right

7 Improper hip flexion

AN U W RO

Table 1: Every variation of the squat movement along with
the corresponding form ID# used in the data

from this ideal model, the movement becomes more inefficient and
can often cause injury. Participants were instructed to follow the
guidelines established by the National Strength and Conditioning
Association (NSCA) [4]. With feet shoulder-width apart, the par-
ticipant was told to sit back and let their knees slowly bend while
keeping a flat back and their chest up. Their heels remained on the
floor with the knees in line with their toes. When beginning their
ascent, the participants made sure to extend their hips and knees
at the same rate and to keep their chest up, again with their heels
down and knees moving in the same line as their toes.

Some incorrect variations occur due to deviations from the
body’s global center of gravity. For example, a user may shift their
hips to the left or right while descending into their squat (Squat-
FormlID 5,6). Another deviation in this category occurs when a user
shifts their mass too far forward, often seen through the user’s heels
raising off the ground (SquatFormID 4) or their knees passing far
over their toes (SquatFormID 1). Improper hip flexion occurs when
the user drops their chest during descent and/or leads the ascent
by straightening their knees, inefficiently shifting their center of
gravity during the movement (SquatFormID 7).

Other deviations displace local centers of gravity in the joints,
specifically the knees. If the knees move towards each other or
away from each other during the squat (SquatFormID 2,3), the user
is away from their maximum potential which is when the knees
remain tracked in line with the toes.

The set of deviations used for data collection is not comprehen-
sive, but does reflect seven of the most popular deviations seen as
verified by a physiotherapist and a personal trainer.

2.2 Data Collection

Twenty healthy participants agreed to contribute data for this study.
Volunteers varied widely in age, from 22 to 60 years old with a
median age of 27 and a standard deviation 9.35. They also varied
in their history of squat performance from those with little to no
experience up through advanced athletes.

After the participant signed a consent form, an Mbient Lab Meta-
MotionR IMU sensor was placed on their back at the L4 vertebra.
Each participant was instructed on the expected form for the correct
squat and each deviation. They performed ten correct squats and
three to five of each deviation under the supervision of a certified
personal trainer and fitness coach.
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Figure 1: Visualization of a correct squat by volunteer-0

Accelerometric and gyroscopic data were collected at a frequency
of 100Hz during each of the squats. An example of the tri-axial gy-
roscopic and accelerometric data tensors collected during a correct
squat by volunteer-0 is shown in Fig 1.

Gyroscopic magnitudes for each participant over their squat
variations can be seen in Figure 7. Data was then labeled according
to squat form ID (from 0 to 7) as well as participant ID (from 0 to
19).

3 TRANSFER LEARNING PROCEDURE AND
RESULTS

The GaitNet dataset is the largest accelerometric human gait dataset
ever compiled [7, 10]. The entire dataset is a 1.2e6 X 4 X 100 ten-
sor and contains tri-axial accelerometric data collected from 1000
volunteers in 150+ countries. Each gait cycle matrix G is of size
4 x 100. The 4 axes are X, y, z plus the magintude axis. The di-
mension of the temporal axis is the end-result of resampling all
gait cycles to size 100. That is, G = [gx(t), gy(t), gz(t), Gmag(t) =

\/g)zf(t) + gé(t) +g2(t)];t = 1,..,100. One of the models used to an-
alyze this dataset was a deep CNN architecture named DeepGaitID
that achieved 63% top-1 accuracy on the 1000-class GaitNet dataset.
We chose this model to serve as our pretrained model for transfer
learning.

As evinced in [9], there are many sub-frameworks within trans-
fer learning. Generally in classification problems, the last layer
of the original deep-net model is removed and replaced with a
layer specific to the new data. Other layers can be frozen or left
unfrozen. If all pretrained layers are frozen, the weights from those
layers are used to extract features from the new data as that data
is passed through to the added layer(s). High accuracy classifica-
tion from this scenario is achieved if there is a high correlation
between the original and new data. On the other end, all of the
layers can remain unfrozen. In this case, the pretrained model acts
as a weights-initializer for the new data [6]. For this study, we chose
to retrain all layers of the original model. Some of the benefits of
transfer learning, which we saw in this study, are that less data is
required to achieve significant results and that the model learns
faster than when it trained the original data [6].

In order to investigate the potential of transfer learning using
this model, we removed the 1000-node softmax layer from the
DeepGaitID model(froze every layer) and passed the Squat-20
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Figure 2: The epoch-wise plot of the train/test accuracy/loss

tensors to obtain 80-dimensional feature vectors. Figure 3 shows
the t-SNE visualization of the features obtained colored according
to the user-id. Clusters emerged, dividing users reasonably well,
which sets the stage for transfer learning.

We constructed a DeepSquatID CNN by inheriting all the pre-
softmax layers of the DeepGaitID model and introducing two
new fully connected layers interspersed with dropout layers (with
dropout rates of 0.25). The dimensionality of the 2 new layers were
chosen to be 256 and 128 respectively. This was capped with a final
softmax layer with 20 nodes and is as shown in Fig 4.

We then retrained this model on the Squat-20 dataset using cat-
egorical cross-entropy loss and the rmsprop optimizer. To provide
regularization, we used early stopping and reduced learning rate
on plateau (factor=0.1, ¢ = le — 4) strategies. We also performed
label smoothing as an additional regularization pre-processing step
with a smoothing factor of € = 0.1. It is worth noting that we made
no effort to normalize the data in order to bring the gyroscopic data
(whose tri-axial readings, that is the roll, pitch and the yaw, are in
rad/sec) to the accelerometric world (whose measurements are in
ms~2).

100
°
o . " e 7s
* Sty
50 L o ® . 15.0
: e { -’ ‘. S ? 125
0 » ¢ “e «“ e '
o o%," \' L .:.1 .
- e P o8 “Pax : 10.0
-50 1 ) % 1 N Y
L ] L]
. o ®gq® 75
L " =
-100 - o -
-150 25
L
; . . . . 00
-100 -50 0 50 100

Figure 3: tSNE visualization of the 80-dimensional features
extracted from the pre-softmax layers of the DeepGaitID
classifier. The colors denote the user-ID
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Figure 4: The post-transfer learning DeepGaitID architecture

In order to ensure fast enrollment of the athletes/patients, we
performed a rather frugal train-test split of 0.6 : 0.4 which left us
with 352 tensors in our training set and 235 tensors in our testing
set. Even with this small amount of data, our model achieved a
87% top-1 accuracy as seen the classification report in Table 2. In
Figure 5, the class-wise confusion matrix reveals a low number
of misclassifications and high accuracy across the classes. For fur-
ther exploration into this study, a colab notebook? showcasing the
obtained results has been duly open-sourced.

4 CONCLUSION AND FUTURE WORK

In this paper, we were able to showcase a successful transfer learn-
ing experiment that entailed using a deep CNN model pretrained
on the state-of-the-art GaitNet. Though the original dataset con-
tained accelerometric gait data collected from commercial phones,
we were able to transfer human classification into the domain of
gyroscopic squat exercise signatures emanating from a commercial
off-the-shelf IMU sensor kit. This is currently a work in progress
and we are extending this work in the following two directions:

(1) Trying to replicate the results with tri-axial magnetometric
data.
(2) Performing participant classification in conjunction with

squat-type classification. A naive attempt at using the DeepGaitID

CNN and trying to predict the squat-type rather than user-ID
yielded an accuracy of ~ 45%.

Zhttps://bit.ly/2VG6dXP
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Figure 5: Confusion matrix for the Squat-20 dataset
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Figure 7: Visualization of the variations in g,,44 across different users performing squats [User-(userID) (squatformID)]
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