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ABSTRACT
We consider a setting where multiple entities interact with each
other over time and the time-varying statuses of the entities are
represented as multiple correlated time series. For example, speed
sensors are deployed in different locations in a road network, where
the speed of a specific location across time is captured by the corre-
sponding sensor as a time series, resulting in multiple speed time
series from different locations, which are often correlated. To enable
accurate forecasting on correlated time series, we proposes graph
attention recurrent neural networks. First, we build a graph among
different entities by taking into account spatial proximity and em-
ploy a multi-head attention mechanism to derive adaptive weight
matrices for the graph to capture the correlations among vertices
(e.g., speeds at different locations) at different timestamps. Second,
we employ recurrent neural networks to take into account temporal
dependency while taking into account the adaptive weight matrices
learned from the first step to consider the correlations among time
series. Experiments on a large real-world speed time series data set
suggest that the proposed method is effective and outperforms the
state-of-the-art in most settings.
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1 INTRODUCTION
Complex cyber-physical systems (CPSs) often consist of multiple
entities that interact with each other across time. With the contin-
ued digitization, various sensor technologies are deployed to record
time-varying attributes of such entities, thus producing correlated
time series [5]. One representative example of such CPSs is road
transportation system [6, 20], where the speeds on different roads
are captured by, e.g., loop detectors and speed cameras, as multiple
speed time series [9, 10].

Accurate forecasting of correlated time series have the potential
to reveal holistic system dynamics of the underlying CPSs, including
predicting future behavior [5] and detecting anomalies [12, 13],
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which are important to enable effective operations of the CPSs.
For example, in an intelligent transportation system, analyzing
speed time series enables travel time forecasting, early warning
of congestion, and predicting the effect of incidents, which help
driversmake routing decisions [7, 15]. To enable accurate and robust
correlated time series forecasting, it is essential to model the spatio-
temporal correlations among multiple time series. To this end, we
propose graph attention recurrent neural networks (GA-RNNs).

We first build a graph among different entities by taking into
account spatial proximity. In the graph, vertices represent entities
and two vertices are connected by an edge if the two corresponding
entities are nearby. After building the graph, we apply multi-head
attention to learn a weight matrix. For each vertex, the weight
matrix indicates, among all the vertex’s neighbor vertices, which
neighboring vertices’ speeds are more relevant when predicting
the speed of the vertex.

Next, since recurrent neural networks (RNNs) are able to well
capture temporal dependency, we modify classic RNNs to capture
spatio-temporal dependency. Specifically, we replace weight mul-
tiplications in classic RNNs with convolutions that take into ac-
count graph topology (e.g., graph convolution or diffusion convo-
lution [14]). However, instead of using a static adjacency matrix,
we employ the attention weight matrix learned from the first step
to obtain adaptive adjacency matrices. Here, with the learned at-
tention weight matrices and the inputs at different timestamps, we
obtain different adjacency matrices at different timestamps, which
are able to capture the dynamic correlations among different time
series at different timestamps.

To the best of our knowledge, this is the first study that utilize
attention to derive adaptive adjacency matrices which are then
utilized in RNNs to capture spatio-temporal correlations among
time series to enable accurate forecasting for correlated time series.
Experiments on a large real-word traffic time series offer evidence
that the proposed method is accurate and robust.

2 PROBLEM DEFINITION
Consider a cyber-physical system (CPS) where we have N entities.
The status of the i-th entity across time (e.g., from timestamps 1
to t ) is represented by a time series TS(i) = ⟨x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
t ⟩,

where a K-dimensional vector x (i)j records K features (e.g., speed
and traffic flow) of the i-th entity at timestamp j.

Given historical statuses of all entities, we aim at predicting the
future statuses of all entities. More specifically, we have historical
statuses covering a window [ta+1, ta+l ] that contains l time stamps,
and we aim at predicting the future statuses in a future window
[ta+l+1, ta+l+p ] that contains p time stamps. We call this problem
p-step ahead forecasting.
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Figure 1: Graph Attention Recurrent Neural Network

3 GRAPH ATTENTION RNNS
We proceed to describe the proposed graph attention recurrent
neural network (GARNN ) to solve the p-step ahead forecasting.

3.1 Graph Signals
We first build a directed graph G = (V ,E) where each vertex v ∈ V
represents an entity in the CPS, which is often associated with
spatial information such as longitude and latitude. Since we have
N entities in total, we have |V | = N . Edges are represented by
adjacency matrix E ∈ RNxN , where E[i, j] = 1 represents an edge
from the i-th to the j-th vertices. If the entities are already embed-
ded into a spatial network, e.g., camera sensors deployed in road
intersections in a road network, we connect two entities by an edge
if they are connected in the spatial network. Otherwise, we connect
two entities by an edge if the distance between them is small [14].

At each time stamp t , each entity is associated with K features
(e.g., speed, flow). We introduce a graph signal Xt ∈ RNxK =

[x
(1)
t ,x

(2)
t , . . . ,x

(N )
t ]T to represent all features from all entities at

timestamp t . Based on the concept of graph signals, the problem
becomes learning a function that takes as input l past graph signals
and outputs p future graph signals:

⟨Xa+1, ...,Xa+l ⟩ → ⟨X̂a+l+1, ..., X̂a+l+p ⟩.

3.2 GARNN Framework
The proposed GARNN consists of two parts, an attention part and
an RNN part, which follow an encoder-decoder architecture as
shown in Fig. 1. At each timestamp, we firstly model the spatial
correlations among different entities using multi-head attention
as two attention weight matrices Aoutt and Aint , which consider
the outgoing and incoming traffic, respectively. Next, the two at-
tention weight matrices are fed into an RNN unit together with
the input graph signal at the time stamp, which facilitate the RNN
unit not only capture the temporal dependency but also the spatial
correlations, making it is possible to capture the spatio-temporal
correlations among different time series.

3.3 Spatial Modeling
To capture the spatial correlations among different entities at a
specific timestamp, we employ attention mechanism [2]. The idea
is to determine, in order to predict the features of an entity, i.e., a

vertex, how much should we consider the features of the vertex’s
neighbour vertices. We may consider different neighbour vertices
differently at different timestamps. Specifically, for each vertex i ,
we compute an attention score w.r.t. to each vertex in NB(i) =
{j |E[i, j] = 1} ∪ {i}, i.e., vertex i’s neighbour vertices and itself.

We proceed to show how to compute an attention score for
vertex i . Recall that for any vertex i in the graph, its features at
timestamp t is represented by a K-dimensional vector x (i)t ∈ RK .
Vertex j is a vertex from NB(i). Attention score At [i, j] indicates
how much attention should be paid to vertex j’s features in order to
estimate vertex i’s features at timestamp t , which is computed based
on Equation 1, where [·| |·] represents the concatenation operator.

At [i, j] =
exp(LReLU (v⊺[Wx

(i)
t | |Wx

(j)
t ]))∑

m∈NB(i) exp(LReLU (v⊺[Wx
(i)
t | |Wx

(m)
t ]))

(1)

First, we embed the features from each vertex with an embedding
matrixW ∈ RF×K , where F is the size of the embedding. Then,
we concatenate the embeddings of the two vertices’ featuresWx

(i)
t

andWx
(j)
t , which is fed into an attention network. The attention

network is constructed as a single-layer feed forward neural net-
work, parameterized by a weight matrix v ∈ R2·F×1. In addition,
we apply LeakyReLU (with a negative input slope of 0.2) as activa-
tion function (denoted as LReLU in Equation 1). Finally, we apply
softmax to normalize the final output to obtain At [i, j].

Motivated by [17], we observe that stacking multiple attention
networks, a.k.a., attention heads, is beneficial since each attention
network can specialise on capturing different interactions. Assume
that we use a total of C attention networks, each network has its
own embedding matrixW (c) ∈ RF×K and weight matrix v(c) ∈

R2·F×1 in the feed forward neural network. There are multiple
ways of combining the attention heads, in our experiments we used
average according to Equation 2,

At [i, j] =
1
C

C∑
c=1

exp(LReLU (v
⊺
c [Wcx

(i)
t | |Wcx

(j)
t ]))∑

m∈NB(i) exp(LReLU (v
⊺
c [Wcx

(i)
t | |Wcx

(j)
t ]))

(2)
So far, for each vertex, we have computed the attentions to all its

neighbors, which captures the influence of the outgoing traffic. On
the other hand, it is also of interest to capture the influence of the
incoming traffic. To this end, we use the transpose of the adjacency
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matrix E to define neighboring vertices and apply the same atten-
tion mechanism to obtain another attention matrix to represent the
influence of incoming traffic. Finally, we obtain two attention matri-
ces Aoutt ∈ RN×N and Aint ∈ RN×N , which capture the influence
from outgoing traffic and incoming traffic, respectively.

3.4 Spatio-Temporal Modeling
We integrate the learned attention matrices into classical recurrent
neural networks to capture spatio-temporal correlations. We follow
an encoder-decoder architecture as shown in Figure 1, which is able
to well capture the temporal dependencies across time. Next, we re-
place the matrix multiplications in RNN units by convolutions that
take into account graph topology such as diffusion convolution or
graph convolution. Here, instead of using a static adjacency matrix
E that only captures connectivity, the convolution here employs the
learned attention matrices Aoutt and Aoutt at timestamp t as adap-
tive adjacency matrices since at different time stamps, we obtain
different attention matrices. We proceed to define a diffusion convo-
lution operator ⊗ on a graph signal Xt ∈ RNxK using the learned
attention matrices Aoutt and Aint at timestamp t in Equation 3.

Xt ⊗ Θ = α(
K∑
k=1

H∑
h=1

(θk,h,1(A
out
t )h+θk,h,2(A

in
t )h )Xt [·,k]) (3)

Here,α is an activation function, matrixΘ ∈ RK×H×2 is a filter to
be learned, and Xt [·,k] represents the k-th column of graph signal
Xt , which is the k-th features of all entities. We often applyQ differ-
ent filters to perform diffusion convolutions and then concatenate
the results into a matrixXt ⊗Θ = [Xt ⊗Θ1 | |Xt ⊗Θ2 | | . . . | |Xt ⊗ΘQ ].
Finally, graph signal Xt is convoluted into matrix Xt ⊗ Θ ∈ RN×Q .

Next, we integrate the proposed graph attention based convolu-
tion into an RNN. Here, we use a Gated Recurrent Unit (GRU) [4]
as an RNN unit to illustrate the integration, where the matrix multi-
plications in classic GRU are replaced by the graph attention based
diffusion convolutional process as defined in Eq. 3.

rt = σ (Θr ⊗ [Xt | |Ht−1] + br )

ut = σ (Θu ⊗ [Xt | |Ht−1] + bu )

ĥt = tanh(Θĥ ⊗ [Xt | |(rt ⊙ Ht−1)] + bĥ )

Ht = ut ⊙ Ht−1 + (1 − ut ) ⊙ ĥt

Here, Xt ∈ RN×K is the graph signal at timestamp t , Ht is the
output at timestamp t . rt , ut and ĥt represent the reset gate, update
gate, and candidate context at time t . ⊗ indicates the proposed graph
attention based diffusion convolution, and Θr , Θu , and Θĥ are the
filters used in the three convolutions. ⊙ is Hadamard product.

The proposed graph attention is generic in the sense that it pro-
vides a data-driven manner to produce adaptive adjacency matrices
and thus can be integrated with different kinds of convolutions that
utilize graph adjacency matrices. Such convolutions often use a
static adjacency matrix, while the proposed graph attention allows
us to employ adaptive adjacency matrices at different timestamps,
which are expected to better capture the spatio-temporal correla-
tions among different time series.

4 EMPIRICAL STUDY
Experimental Setup: We conducted experiments on a large real
world traffic dataset METR-LA from [14]. The dataset consists of
speed measurements from 207 loop detectors spread across Los
Angeles highways. The data was collected between March 1st 2012
and June 30th 2012 with a frequency of every 5 minutes.

We follow the same experimental setup as [14]. We build a graph
by connecting from sensors i to j if the road network distance from
i to j is small [14]. Since road network distance is used, the distance
from i to j may be different from the distance from j to i , making
the adjacency matrix E asymmetric. We use 70% of the data for
training, 10% for validation and 20% for testing. We consider three
metrics to evaluate the prediction accuracy: Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE). We consider a setting where we use l = 12 past
observations to predict the next p = 12 steps ahead and report the
errors at three different intervals (15, 30, and 60 mins).

Implementation Details: The method is implemented in Python
3.6 using Tensorflow 1.7. A server with Intel Xeon Platinum 8168
CPU and 2 Tesla V100 GPUS are used to conduct all experiments.
We trained the model using Adam optimizer with 0.01 as learning
rate which decreases every 10 epochs after the 40th iteration. We
used a total of 3 attention heads with an embedding size of 16. In
addition we used a 2 layer GRU, with 64 units, a batch size of 64,
and the same scheduled sampling technique described in [14].
Experimental Results: We consider the following two baseline al-
gorithms from [14]: graph convolutional recurrent neural network
(GCRNN) and diffusion convolutional recurrent neural network
(DCRNN). Since GCRNN and DCRNN employ graph based convo-
lutions, where GCRNN uses graph convolution and DCRNN uses
diffusion convolution [14], we incorporate the proposed graph at-
tention based adaptive adjacency matrix into the two methods to
obtain GA-GCRNN and GA-DCRNN.
Accuracy: We compare the proposed GA-GCRNN and GA-DCRNN
with the two baselines in Table 1. Since we use exactly the same
experiment setup, all the results of the baselines are taken directly
from [14] (written in italics in Table 1). A more in-dept description
of the baselines, along with hyper-parameters can be found in [14].

T Metric GCRNN GA-GCRNN DCRNN GA-DCRNN

15
min

MAE
RMSE
MAPE

2.80
5.51
7.5%

2.76
5.33
7.1%

2.77
5.38
7.3%

2.75
5.28
7.0%

30
min

MAE
RMSE
MAPE

3.24
6.74
9.0%

3.21
6.45
8.8%

3.15
6.45
8.8%

3.19
6.39
8.0%

1
hour

MAE
RMSE
MAPE

3.70
8.16
10.9%

3.70
7.68
10.9%

3.6
7.59
10.5%

3.72
7.64
11.0%

Avg.
MAE
RMSE
MAPE

3.28
6.80
9.13%

3.22
6.48
8.93%

3.17
6.47
8.86%

3.22
6.43
8.66%

Table 1: Evaluation of GARNNs

We first compare GA-GCRNN vs GCRNN, where GA-GCRNN
outperforms GCRNN in all settings (see the underline values in
Table 1). Next, GA-DCRNN outperforms DCRNN in most settings
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(see the bold values in Table 1), especially in short term predictions
at 15 and 30 minutes. On average, GA-DCRNN is better when using
RMSE and MAPE. This suggests that GA-DCRNN avoids having
large prediction errors but may have more small prediction errors
than does DCRNN. This shows that GA-DCRNN better captures
the general trend of the underlying traffic data.
Efficiency:While DCRNN takes on average 271 s for one epoch, GA-
DCRNN requires 401 s. The discrepancy between the two models is
due to the attention mechanism, which requires more computation.
Note that when implementing the attention we followed [18], but
a more efficient way is available [16]. For the same reason, GA-
GCRNN also takes longer time than GCRNN does.
Summary: Overall, the results suggest that the proposed graph
head attention based adaptive adjacency matrices can be easily
integrated with convolutions that consider graph topology and has
a great potential to enable more accurate predictions, especially
for relatively short term predictions. It is of interest to further
investigate how to improve long term predictions.

5 RELATEDWORK
For time series forcasting, auto-regressive models, e.g., ARIMA,
is widely used as a baseline method. Hidden Markov models are
also often used to enable time series forecasting. A so-called spatio-
temporal HMM (STHMM) is able to consider spatio-temporal cor-
relations among traffic time series from adjacent edges [21].

Neural networks are able to capture non-linear dependencies
within the data, which enable non-linear forecasting models. In
particular, Recurrent Neural Networks (RNNs) are used with suc-
cesses in multiple domains such as traffic time series prediction [14]
or wind forecasting [19], due to their recurrent nature that is able
to capture temporal relationships within the data. Another well
known type of deep learning models are Convolutions Neural Net-
works (CNNs). CNNs often work on grid-based inputs, limiting its
applicability to graph-based inputs such as road networks. Recently,
Bruna et al. [3] introduce Graph Convolutional Networks (GCNs)
that combines spectral graphs theory with CNNs. A recent study
employs GCNs to fill in missing values for uncertain traffic time
series [8]. [1] proposes Diffusion Convolution Neural Networks
(DCNNs) which fall under the non-spectral methods. DCNN works
on the assumption that the further two nodes are in terms of graph
topology, the lower impact they should have.

DCRNN [14] extends DCNN with RNN so that it also captures
time dependencies within the data. Our work is closely related
and builds on top of DCRNN. The main difference is that DCRNN
assumes that the adjacency matrix used in random walks is static.
However, this assumption might not always hold and we propose
to learn an adaptive adjacency matrix at each time stamp using
attention mechanism that considers graph topology. Multi-task
learning [11] has also been applied for correlated time series fore-
casting, where both a CNN and a RNN are combined to both forecast
future values and reconstruct historical values [5]. Our work re-
sembles [18] and [22]. The main difference is that our model tries
to learn a dynamic adjacency matrix which can afterwards be used
with any type of graph-RNN like structure to update each node
embedding by taking into account its neighbours offering more
flexibility.

6 CONCLUSION
We propose a generic method to obtain adaptive adjacency matri-
ces using graph attention which can be integrated seamlessly with
existing graph based convolutions such as graph convolution and
diffusion convolution. More specifically, we show how the integra-
tion of adaptive adjacency matrices and recurrent neural networks
is able to improve the correlated time series predictions where the
relationships among different time series can be captured as a graph.
Preliminary experimental results show great potential when using
adaptive adjacency matrices, especially for short term predictions.
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