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ABSTRACT 
Understanding temporal changes in regional sources and sinks of 
CO2 (i.e. determined by CO2 flux) is a challenging measurement 
that is needed for assessments of climate change. Long-term 
measurements of CO2 flux are available for more than a decade 
from about 100 tower stations distributed globally containing 
instruments for the measurements of CO2 flux along with an array 
of instruments for measuring meteorological variables. We 
explore the use of two deep machine learning models, a Feed 
Forward Neural Net (FFNN) and a Recurrent Neural net (RNN), 
to determine whether their accuracies are sufficient for inferring 
CO2   flux over land. The RNN we employ is the long short-term 
memory (LSTM) and the FFNN is a standard feed forward 
backward propagation neural net approach. We evaluate both 
model predictions of CO2 flux using long data records from 
distributed tower data sites from Fluxnet stations archived at the 
Oakridge Research National Lab. Our results indicate that the 
deep learning model employing LSTM provides significantly 
more accurate (~22% improvement) predictions of CO2 flux than 
FFNN and can provide regional estimates. We suggest that these 
models be used as tools for data gap filling and temporal pattern 
analysis of CO2 Flux and its correlated variables.  
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1 Introduction  

Plants are responsible for absorbing ~30% of atmospheric CO2 
through the photosynthesis processes. The main factors affecting 

photosynthesis rate  are sunlight, CO2 concentrations, 
temperature,  moisture and surface winds [1]. The rate of change 
of CO2 can be used to quantify photosynthesis activity or plant 
growth. In order to understand such biosphere-atmosphere 
interactions, spatial and temporal gradients of CO2 flux need to be 
highly accurate to quantify the effects of such regional changes 
such as deforestation, wild fires. Measurements of CO2  flux data 
are obtained from Eddy Covariance instruments installed on Flux 
tower stations and are known to show uncertainties due to 
turbulent meteorological fluctuations [2], [3]. Are the accuracies 
of deep learning models sufficient to contribute to improved 
assessments of regional atmospheric variances of CO2 sources and 
sinks? An investigation of how the biosphere reacts to changes in 
atmospheric CO2 is essential to our understanding of potential 
climate-vegetation feedbacks [4]-[8].  

Artificial Neural Networks (ANNs) are often better candidates for 
modeling non-linear processes based on data driven input than 
other statistical methods. Feed Forward Backward Propagation 
Neural Nets (FFNN) have been used for the prediction of CO2 
fluxes using atmospheric CO2 and other variables [9]. They 
showed that a FFNN is a promising technique which can be used 
to predict CO2 flux in place of the eddy covariance method at a 
single point [10]. However, the study was limited to a very short 
period of data observations as well as the number of flux towers. 
In addition, there have been prior efforts to map fluxes across 
North America with machine learning regression tree models by 
[2] globally. In [11] and [12], authors proposed a methodology 
involving an FFNN to provide spatial (1 km×1 km) and temporal 
(weekly) estimates of carbon fluxes of European forests at 
continental scale.  

Deep Learning (DL) neural networks, an evolution of ANNs,  
couple with new advances in computer technologies attempt to 
better mimic the human brain activity of neurons in the neocortex. 
DL models can be trained to recognize complex patterns in digital 
representations of sounds, images, and other data [13]. Because of 
advances in computer technologies, one can now model many 
more layers of virtual neurons than ever before [13]-[15]. With 
deep layer architectures exploiting computational acceleration, 
these new training techniques are producing remarkable advances 
in speech and image recognition; and in medicine by identifying 
molecules that are leading to new drugs. Recurrent Neural 
Networks (RNN) with the Long Short Term Memory (LSTM) 
model is one of the deep learning models, which are able to 
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successfully learn time series data with long range temporal 
dependencies or machine translation for language modeling [16], 
[17]. Extending DL models for applications such as Earth and 
space science as well as other science disciplines will require both 
conceptual breakthroughs and further advances in processing 
power.  

In this study, we train the DL models for both the FFNN and the 
RNN with an LSTM model to learn the weights for predicting the 
CO2 flux from the long term measurements at tower stations of 
CO2 concentration, humidity, pressure, temperature, wind speed 
etc. representing data from  different ecosystem sites. The 
motivation for using LSTM is to utilize the temporal 
dependencies or patterns within the long-term measurements of 
the multivariate variables to improve the regional accuracies of 
the station data. 

The organization of this paper is as following. Section 2 provides 
the description of input datasets and our methodologies. The 
experimental results and analysis are presented in section 3. 
Section 4 presents conclusions and recommendations. 

2 Data description and Methodology  

We use the AmeriFlux, and Fluxnet2015 tower data located at 
different sites (21 ecosystems) in this study. Figure 1 shows a map 
of the selected stations distributed at different latitudes, and 
having different types of environmental ecosystems (for example 
forest, plains, fire sites). The half an hour and hourly data have 
been used. Figure 2 shows the variables for the AmeriFlux tower 
data at Morgan-Monroe, Indiana (MMS) site from Jan 1, 1999 to 
Dec 31, 2013 labeled Temperature (deg C), CO2 Flux (µmolCO2 
m-2 s-1), Net Radiation (Wm-2), Shortwave Radiation (Wm-2), 
Longwave Radiation (Wm-2), CO2 (µmolCO2 mol-1), 
Precipitation (mm). MMS’s hourly data from Jan 1, 1999 to Dec 
31, 2013 has about 152,000 observations (the detail of datasets 
and full list of variables can be found and downloaded in links 
provided in the acknowledgement section). 

2.1 Data preprocessing  

The preprocessing of the data consists of two parts: filtering row 
data and normalizing all input variable data. Row data with filled 
values (-9999) or having flags 'y' or out of normal CO2 flux ranges 
are filtered out. Since the input variables have different value 
ranges, which vary significantly, all input data are normalized to 
scale between 0 and 1 to improve the time to reach convergence. 
The only output variable of the learning model is the quantity CO2 
flux and it is de-normalized into its original data range. 

 
Figure 1 Map of selected tower sites for experiments 

 
 

Figure 2 AmeriFlux hourly data at AmeriFlux at Morgan-Monroe, 
Indiana (MMS) from Jan 1, 1999 to Dec 31, 2013 (x axis shows index 

of hourly data by time, y axis are in above units of variables) 

2.2 Selection of multivariate input variables 

We used WEKA [18] (a data mining tool) to perform a principal 
component analysis (PCA) in conjunction with a Ranker search 
which ranks attributes by their individual evaluations of the top 
eigen value on some of the selected sites. The output of the PCA 
was a set of components formed by means of linear combinations 
of the correlated attributes. The results from WEKA’s PCA and 
Ranker attribute selector showed the following set of variables to 
have the highest rank. The first set uses heat fluxes including net 
radiance at the top of the atmosphere (Wm-2), latent heat (Wm-2), 
sensible heat (Wm-2), soil heat flux (Wm-2), air and soil 
temperatures (deg C). The second set of input variable does not 
use the heat fluxes since they are not typically available globally 
and they are derived from other variables such as radiation. In this 
case, we have incoming shortwave radiation (Wm-2), outgoing 
shortwave radiation (Wm-2), Carbon Dioxide (CO2) mole fraction 
in wet air (µmolCO2 mol-1), Air temperature (deg C), and 
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Precipitation (kPa) have been used as input variables. The output 
of both FFNN and RNN models predict CO2 flux (Carbon 
Dioxide (CO2) turbulent flux (µmolCO2 mol-1) for dataset at 
AmeriFlux or CO2 flux (umolCO2 m-2 s-1) for the dataset at 
Fluxnet2015. 

2.3 Building deep learning models for estimation of CO2 Flux  
Both FFNN and LSTM models use the same set of multivariate 
variables as listed in the previous session and estimate CO2 flux as 
output.  Figure 3 shows the layers of FFNN model and its input 
and output variables. A Long Short Term Memory (LSTM) 
network is a Recurrent Neural Network (RNN) where connections 
between units in a layer form a directed graph along a sequence 
(see figure 4). This RNN architect exhibits dynamic temporal 
behavior for a time sequence. Unlike FFNN, where input 
variables at particular times are trained independently and there 
are no connections within neurons in the same layer, RNN enables 
the insertion of state operations or gates between layers, and 
neurons within the same layer have connections. Thus, when 
learning the model at a particular time using FFNN, there is no 
consideration of the historical data from prior times.  

 
Figure 3 FFNN model architecture, input: multiple variables (CO2, 

humidity, temperature etc.), hidden layers, output: CO2 flux. 
The RNNs can use their internal state (memory in LSTM unit) to 
process sequences of inputs. For example, in this application, 
input measurements of CO2 concentration, humidity, pressure, 
temperature, wind speed, etc  have been observed at every half 
hour forming a time sequence. Time dependency can be learned 
by LSTM. It can selectively learn when to forget things or 
remember by controlling the information flow through block or 
pass conditions in each LSTM unit state called gates. There are 
three types of gates in each LSTM unit. The Forget Gate decides 
which information to discard from the block. The Input Gate 
conditionally makes decision on which values from the input will 
be used to update memory state. The output Gate will 
conditionally decide which value will be output based on the input 
and the memory of the block. Gates of the LSTM units have 
weights that are learned during the training procedure. LSTM 
units are often implemented in multiple layer architects. This 
model capability is one of the advances made in deep machine 
learning models, which can be applied to solve difficult time 
sequence problems in machine learning. It has been successfully 
implemented [17]. The detail of LSTM units and the architecture 
of this model are referenced in [16], [17].  

 
Figure 4 Recurrent neural network with LSTM model 

 
Figure 4 shows the following structure of the RNN with the 
LSTM model that we employ. Each observed time step consists of 
an observation of multiple input variables, and the number of time 
steps in each LSTM unit can be configured. A time step=3, means 
that the current observation is learned using two previous 
observations of the input variables. The two layers of 20 LSTM 
units each are thus configured. A batch of 32 such input 
observations can be specified and trained at each LSTM. The 
Flatten unit is used to produce a single output, which is the 
prediction of CO2 flux. The DropOut technique is used for 
training to improve the performance of the neural network. During 
training, it drops x% of units in each layer [19]. All de-activate 
units would not participate in the training propagation. This 
technique will block the error values in each layer from passing to 
the output level. The dropout technique only applies on the 
training phase. Advanced gradient algorithm such as SGD and 
AdaGrad [15], [20] in Tensor flow have been used to train the 
models. 

3 Experiment results and discussion  
This section presents the experiments for the comparison of 
FFNN and RNN/LSTM models for predicting CO2 flux from 
Ameriflux station data and from the Fluxnet2015 stations. We 
show below that Recurrent Neural Networks (RNN) with the 
Long Short Term Memory (LSTM) improvements in the 
prediction of CO2 flux by ~22% interms of Root Mean Square 
Error and R2 (correlation coefficient)  scores. 

 
3.1 Comparison of FFNN and LSTM models 
Table 1 shows the comparisons between FFNN and RNN models 
using RMSE and R2 correlation metrics for a selected set of tower 
sites (shown in figure 1, map of tower stations). These 
experiments use net radiation, latent heat, sensible heat, and soil 
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heat  flux, air and soil temperatures as input variables and predict 
CO2 flux for AmeriFlux stations and the incoming shortwave 
radiation, outgoing shortwave radiation, (CO2) mole fraction in 
wet air, Air temperature and Pressure (kPa) at the Fluxnet2015 
tower stations. The dataset is divided into three groups: (i) 80% of 
dataset has been used to determine the weights during neural 
network training; (ii) 10% of dataset has been used during 
network training to validate the errors to prevent overtraining; and 
(iii) 10% of dataset is used as test dataset to assess the network’s 
performance with ‘new’ data. We used 10 years of hourly or half 
an hour observations. Eight (8) years of data has been used for 
training, 1 year for evaluation and the last year of data has been 
used for testing (new prediction or forecasting).  

The FFNN model used in this section was configured to run using 
either 10 layers or 20 layers, with 20 neurons each layer. RNN 
models used 2 layers each have 20 LSTM units. Both models 
were trained using the back propagation gradient descent 
algorithm with ‘elu’ activation. The mean improvement for the 
average of the  stations employed  is 22% and the correlation 
improvement is 20%. Experiments also show that for the 14 
stations with data having longer records than a decade, the mean 
improvement for the LSTM with respect to FFNN is 28% and the 
R2 correlation score is 27%. This is indicative of the influence of 
incorporating the time variations into the machine learning 
algorithm of RNNs.   

Table 1 Comparisons between FFNN and LSTM (RNN)  

 
 
3.2 Anomaly correlation analysis  
The Morgan Monroe State Forest station in Indiana, had the 
longest continuous record available to the end of 2013, and was 
selected for investigating the performance of Neural Nets using 
anomaly correlation metrics. Figure 5 shows a plot of the anomaly 
for the observed CO2 flux for years 2011-to 2013, where the mean 
of the monthly data for the years 1999-2010 (training data) are 
removed. 

Superimposed are the predicted CO2 flux anomalies for FFNN and 
LSTM anomalies with the same observed monthly means 
removed. The image shows that the LSTM fits the observed 
anomaly better for positive anomalies, but one cannot infer the 

values of the LSTM for negative anomalies form this image. 
Thus, in table 2, we present the anomaly correlation metrics for 
the above MMS station as well as two additional stations, one in 
Finland and the other in France.  The anomaly correlation of three 
stations (Ameri- US- MMS, FLX-FI-Hyy, FLX-FR-Pue) shows 
that LSTM produces about ~29% improvements in the anomaly 
correlation metric compared with FFNN. This result is consistent 
with the mean performance improvements obtained for the 21 
station sites (table 1). 
 

Table 2 Anomaly correlations for FFNN and LSTM prediction vs. 
observation 

 

 
Figure 5 Anomaly correlation comparisons between FFNN and RNN, 

LSTM 

4 Conclusions  

We have presented two deep learning models, FFNN and RNN 
(LSTM) for prediction of CO2 flux at annual scales. We have used 
micrometeorological data from AmeriFlux, and Fluxnet2015 sites 
with different vegetation and regional climates distributed 
globally. We presented CO2 flux machine learning experiments 
from more than 21 distributed stations using hourly data for 
multiple years for training, testing and validity tests. The 
experiments show for the global distribution of station data with 
more than a decade of observations that the LSTM model 
produces about 22% improved predictions compared with FFNN 
models. We suggest that these models can be used as a tool for 
data gap filling or analysis of temporal patterns and its correlated 
variables for predicting CO2 flux. 
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