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ABSTRACT 
Although missing data is a frequent phenomenon in 
collected data, few efforts have focused on imputing a 
whole block of missing continuous time series data. With 
the purpose of helping wearable technology overcome 
data limitations resulting from battery constraints, we 
propose a time series ensemble model (TEM), which can 
estimate a sequence of missing time series data based on 
existing data. When TEM is used, the accuracy of activity 
recognition yields improved performance compared with 
random guess of activity. Therefore, we conclude that 
TEM can potentially improve the benefit of collecting 
continuous data by imputing the data missing between 
the collection periods. 
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Introduction 
The use of wearable technology is expeditiously 
increasing. Data collected from wearable devices can 
help to recognize current activities and ultimately better 
understand human behavior and its influences. As an 
example, the long-term goal of our research is to learn 
the relationships between genetics, sensor-observed 
behavior, and health conditions. To find these 
connection, we need large amounts of continuous, 
longitudinal sensor data. We automatically label the 
collected data with activity categories and extract 
relevant features such as times spent on selected 
activities and changes in activity patterns over time. 
Smart watches offer a ubiquitous and ecologically valid 
method to collect continuous data. However, battery 
constraints place limitations on data collection. When 
wearable technology collects continuous sensor and 
location data, the battery drains quite fast, usually within 
6 hours. Because round-the-clock data collection cannot 
be accomplished with a single device, we rely on  data 
imputation to estimate the missing data between the 
collection periods. This presents a way to reduce 
difficulties in collecting continuous data via 
smartwatches during a long time period.  

Missing data imputation has been widely investigated in 
the field [2,3,5,9,11,16,18]. Investigated approaches 
include EM [6], multiple imputation [1,17], kernel 
methods [15], and matrix factorization [4]. Additionally, 
Sovilj et al. introduced a data imputation method based 
both on a Gaussian Mixture Model and an Extreme 
Learning Machine [16]. The Gaussian Mixture Model 
generates a model to handle missing data based on a 
Gaussian distribution, and the Extreme Learning 
Machine generates a multiple imputation strategy for the 
final estimation. In recent years, Recurrent Neural 
Networks have demonstrated state-of-the-art 
performance in many applications with sequential data 
[12]. Che et al. have developed a deep neural network 
GRU-D which is based on a Gated Recurrent Unit 
(GRU).[2] This model can capture long-term dependences 
in time series and utilize the missing pattern for better 
predicting the result. However, few study works on 
entire period of data missing. Their studies majority focus 
on partial of the data missing in one query. 

In this paper, we construct a time series ensemble model 
(TEM) for imputing smartwatch data. In contrast with 
previous approaches, we seek to generate an entire 
sequence of missing data rather than a single missing 
value. Based on the dependence between each sensor, we 
build a dependent tuning algorithm (DTA). DTA can help 
tune the final value of each sensor reading based on other 
sensor output.  We validate our approach based on smart 
watch data collected for multiple subjects. 

Method 
We propose an ensemble method for time series data 
imputation. The five base estimators we use are linear 
regression [14], K-nearest neighbors regression [8], SVM 
(polynomial kernel and Gaussian kernel) [19] and 
polynomial regression [14]. These classifiers increase the 
diversity of the model, thus we hypothesize that 
combining these classifiers can improve model accuracy. 
We combine the base classifiers with voting. We further 
improve the method using Adaboost [10] to weight past 
errors from the model and further improve imputation 
accuracy. Figure 1 displays the architecture of our 
ensemble method for smart watch data imputation. 



 
Figure 1. TEM software architecture. 

To define data points for analysis, we move multiple 
windows through the sensor data and extract features 
from each window. One set of windows moves forward 
in time, another set moves backward. By considering 
data in both directions we obtain a better contextual 
perspective of the missing data. When a block of data is 
missing from the time series, features from windows 
before the block and after the block are used to impute 
the missing block, as shown in Figure 2. Furthermore, we 
use multiple window sizes to generate training data with 
different context sizes. In our experiments we specifically 
consider windows of length 5, 10, 15, 20, 25, 30 and 60 
sensor readings. In the forward direction, a predictor 
learns a mapping from window-based features to a value 
for the time step immediately following the window. In 
the backward direction, the predictor maps window-
based features to a value for the time step immediately 
preceding the window. 

Figure 2 illustrates the feature extraction and prediction 
process for a time series with length 15. In this figure, the 
blue entries represent a window of time series values for 
feature extraction and the red entries represent the 
predicted value. As shown in the middle of the figure, a 
forward-moving window extracts features from data 
points at times 1 through 5 and predicts the value at time 
6, while the backward-moving window extracts features 
from data points 11 through 15 and predicts the value at 
time 11. As shown on the right, the forward window 
advances by one time step to repeat the process, the 
backward window moves backward one time step and 
repeats the process. The prediction process halts when 
the forward window (or backward window) reaches the 
end of the missing data block. In our experiments, we 
predict a maximum of 5 minutes of missing data, beyond 
which the integrity of imputed data is endangered. 

 
Figure 2. The processing of generating data points 
from raw time series data. Here we assume a 
window size of 5 sensor readings. 

Because we utilize multiple window sizes (7 in our case) 
and 2 directions, we train 14 separate ensemble 
regressors on available data. Our training data and 
testing data consists of every continuous sequence of 
ground truth data with size (2 * maximum window size) 
+ (length of imputed data block). For example, if we wish 
to impute 5 minutes (300 seconds) of data then we use 
data from sequences of length 2*60 + 300 = 420 sensor 
readings, or seconds of data, to create data points for 
training and testing the 14 learning algorithms. Finally, 
we train a meta-linear regressor to map output from the 
14 base regressors onto a predicted value. The predicted 
value is then used as part of the input window to predict 
a value that is 2 time steps away from ground truth data. 
We repeat the process as need to predict the entire block 
of missing time series data. The result is our time-series 
ensemble method (TEM) for time series sensor data 
imputation. 

After building TEM, we can optionally refine the model 
using joint prediction[7,13]. Joint inference allows us to 
consider the dependence between each imputed sensor 
type in the final predictor. We hypothesize that including 
this information can improve the accuracy of time series 
data imputation. To perform joint inference, we first use 
TEM to independently predict the value for each of the n 
sensors, s = {s1, .., sn}. In a second pass, when we predict 
the value of sensor 1, we use the predicted values for each 
of the other sensors, s2 through sn, to expand the input 
feature vector. The regressors use the original feature 
vector for sensor 1 together with the predicted values of 
s2.. sn to output the predicted value for s1. The same 
process is applied in a second learning pass for the other 
sensors as well. We refer to this joint prediction 
algorithm as TEM-DTA, which contrasts with the 
original single-pass TEM algorithm.  

Experiment Setup 
We hypothesize that the bi-directional, ensemble method 
contained in TEM will accurately impute large blocks of 
missing sensor-based time series data. If this hypothesis 
is validated, the resulting technique will allow 
researchers to obtain longitudinal wearable data for 
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human behavior analysis even when the actual data 
collection is sparse. To validate our hypothesis, we train 
and test TEM using actual smartwatch sensor data. 

Our dataset is collected by 4 participants who each wore 
Apple Watch 2 continuously for multiple days. Collected 
sensor data include yaw, roll, pitch, rotation rate (X,Y,Z), 
acceleration (X,Y,Z), speed, latitude, longitude and 
altitude. These data are collected once per second. All 
participants are graduate students (1 female and 3 males). 
The participants wear the watch in their daily lives, but 
the period of data collection varies among each 
participant. The longest data collection period is 2 
months, and the shortest one is 2 weeks. In total, we have 
185,974 seconds of collected sensor data. Participants 
collected data continuously throughout the day but took 
off the watch to charge it at night. As a result, we utilized 
each separate day of data for creating data points. 

In addition to collecting raw sensor data, participants 
also provide activity labels. In this way we can determine 
not only the accuracy of imputed data with respect to 
observed ground truth, but we can also quantify the 
impact of TEM on applications that utilize the 
information such as activity recognition. For this dataset, 
participants provided activity labels every 5 minutes 
while wearing the watch. Activities are labeled as work, 
exercise, relax, eat, walk or other. Because the value 
range of each sensor type is different, we normalize the 
data from 0 to 1 before we train the model. Since the 
sensor data include negative numbers, we apply Equation 
1 for this normalization. 

𝑋" =
$%&$'()
$'*+&$'()

   
    (1) 

In our experiment, we report results based on three-fold 
cross validation. We evaluate TEM and TEM-DTA using 
multiple performance measures. The measurements we 
use are mean absolute error (MAE) and root mean 
squared error (RMSE). In addition to evaluating the 
accuracy of imputed data, we also evaluate the impact of 
imputed data on activity recognition performance. 
Specifically, we compare activity recognition 
performance based on data imputed by TEM, by TEM-
DTA, and by TEM using only a single direction (only 
forward or only backward windows). We utilize an 
activity recognition model that was trained on data 
provided by a larger group of 20 participants using a 
random forest with 100 trees and entropy feature-
selection criteria.  

 

Results 
In order to evaluate TEM, we construct two imputation 
models for two of the five base regressors: one is KNN 
and another is SVM with Gaussian kernel (GK). Of the 
five, KNN has a rich history of performing well on this 
type of data and the SVM performed best as a stand-alone 
regressor in our experiments. The two models use single 
directional (forward and backward) and bidirectional 
moving windows. 
We compare the performance of TEM and TEM-DTA 
with a selection of other data imputation methods on 

different data block sizes. Figure 4 shows the MAE and 
RMSE for the tested classifiers. “Forward only” and 
“backward only” regressors utilize TEM in just one 
direction, while “Average” represents the average of all 
the voting regressors and all window sizes for forward-
only and backward-only choices. In the two graphs, we 
can see the one-direction classifiers perform worse 
compared with bidirectional algorithms. TEM and TEM-
DTA dramatically outperform the other algorithms. 
TEM-DTA also exhibits a slight increase in performance 
over TEM alone, providing evidence that capturing the 
relationship between predicted variables improves 
imputation accuracy. 
 
For all regression strategies, error increases 
monotonically with the size of the continuous imputed 
data block. This is because the missing data rate, or 
proportion of missing data (imputed data) to total data 
(imputed data and windows on either side) grows with 
the data block size. In Figure. 4, we see that even though 
the blocking period increases, the performance of TEM 
and TEM-DTA decreases slower than that of the other 
algorithms. 

 
Figure 4. MAE (top) and RMSE (bottom) for selected 
regression strategies. 

 
After determining the RMSE and MAE measures for 
alternative classifiers, we use pre-trained activity 
recognition model to test the accuracy of the data we 
imputed. The pre-trained Random Forest model yields 
85.19% recognition accuracy for the four-person dataset. 
We compare multiple data imputation methods, and 
apply 3-fold cross validation to measure accuracy of a 
model trained with the resulting data.  
 
Figure 5 graphs the results of all the imputation methods. 
We can see that, with 5s missing data, the performance 
of all data imputation methods is similar. As the missing 
data rate increases with larger imputed data blocks, the 
performance TEM and TEM-DTA drops more slowly 
than for the other methods. This provides evidence that 



the bi-directional ensemble regression is stronger than 
individual regressors, particularly as larger blocks of 
continuous data are imputed. 
 
Furthermore, the performance of all methods that rely on 
only one direction drops nearly to the level of random 
guess as the missing data period reaches 300s, while the 
accuracy of the bidirectional methods still remain above 
30%. This indicates that the bidirectional scanning 
provides important multiple perspectives on the data, 
yielding more accurate predicted values.  

 

 

Figure 5. Activity recognition accuracy for selected 
data imputation methods. 

Conclusion 
In this paper, we propose a new method for solving the 
problem of missing time series data.  We hypothesized 
that an ensemble which considers a diversity of 
regressors, context directions, and window sizes can 
provide accurate data imputation even for continuous 
blocks of time series data. The results of our experiments 
show that our method, TEM-DTA, yields reasonable 
performance even when imputing as much as 300s 
missing data. When imputing 5s missing data, TEM-DTA 
yields 81.34%, which lowers recognition accuracy less 
than 4% from the original baseline performance. 
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