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ABSTRACT
It is well known that data normalization is a fundamental pre-
processing step for learning using Convolutional Neural Networks
(CNN). Multiple normalization techniques have been proposed and
finding an appropriate one is not an easy task. Motivated by applica-
tions in the energy consumption field, we study Time Series Classi-
fication (TSC) with deep learning techniques. We adapt DenseNets
to a new convolutional architecture for TSC. We conduct an experi-
mental study the impact of different data normalization techniques
on this architecture. We propose a solution to mitigate different
pre-processing methods and show its applicability across various
fields.
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1 INTRODUCTION
Sequential and time series data mining remains one of the most im-
portant problem in Data Mining. Learning to represent and classify
time series has led to applications in numerous fields. TSC is de-
fined as the task of training a classifier on a dataset {X,Y} in order
to map a time series to a class. The UCR/UEA archive [5] opened
the possibility of comparing TSC algorithms on a wide range of
domains. Pre-processing is a crucial step in any application deal-
ing with data. It includes cleaning, missing values, transformation,
... For image data, pixel intensities are frequently rescaled into a
given range. For time series, instance standardization (also called
z-normalization) is commonly used [5]. It was noted in a recent
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paper [8] that "this traditional pre-processing step should be further
studied [...] since normalization is known to have a huge effect on
DNNs’ learning capabilities".

A traditional TSC algorithm is a Nearest Neighbor classifier with
a distance function specific to time series data such as Dynamic
Time Warping, which was shown to be the best among several
distance measures [3]. Learning new representations is also very
common as time series data is high dimensional and subject to noise.
For instance, Bag of SFA Symbols (BOSS) [16] builds a classifier
upon the symbolic Fourier approximation. Shapelets, introduced
in [18] and refined later [15] [4], are discriminative subsequences
and allow a new representation for time series that can be fed into
a classifier. Ensemble methods have been implemented to lever-
age on different representations and classifiers and are the current
state-of-the-art for TSC: Elastic Ensemble [10], COTE [2], HIVE-
COTE [11]. Recently deep learning methods have been applied to
TSC problems. Using similar architectures to the computer vision
community, Convolutional Networks, ResNets and Multi-Channel
Convolutional Networks [19] were proposed. An experimental re-
view [8] of these methods showed that ResNets lead to the most
accurate results.

Finding the appropriate pre-processing is not an easy task and
generally depends on inner data characteristics. Each technique
may discard some information and should be used with caution. To
the best of the authors’ knowledge the impact of time series pre-
processing on TSC has not been thoroughly studied even though
it remains an important issue for many industrial practitioners. In
this work, we introduce 4 different pre-processing methods and
study their impact. We also propose DenseNets [6] to Time Series,
expanding the family of deep learning architectures for TSC. Fi-
nally, we introduce a new way to mix information from different
pre-processing and show its efficiency on an energy dataset and
UCR data. The paper is organized as follows. Section II reviews
the common pre-processing techniques for time series. Section III
describes our novel convolutional architecture and its extensions.
Section IV presents experimental results for UCR time series and
energy consumption data, followed by concluding remarks.

2 PRE-PROCESSING FOR TSC
Data pre-processing can cover many subfields from sampling, in-
fering missing values, denoising, detrending, ... In this paper we
will consider only univariate time series uniformly sampled with
no missing values.
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2.1 Definitions
The literature shows a wide range of terms used interchangeably,
hence we first define two of the most commonly used normalization
methods: min-max normalization and standardization. Each of them
is broken down into per instance and global normalization. For the
rest of the paper, X ∈ Rn×l is the full dataset where n is the number
of samples and l the time series length, Y ∈ Rn×C is the label vector.
Xi = {X 1

i , ...,X
l
i } denotes the i

th element of X
Global min-max normalization (GN) normalizes the values of

X according to its minimum and maximum converting it into the
range [0, 1]. Typical issues would be out-of-sample minimum and
maximum and outliers, which happens often in many time series
applications. Global standardization (GS) standardizes the values of
X according to its mean and standard deviation. This very common
normalization is usually done per variable in order to give the same
scale for each variable but for time series it would mean to normal-
ize the data per time stamp, destroying temporal structure. Hence
global transformations are a rescaling of data. Instance normaliza-
tion differs since each time series of the dataset is normalized using
its own statistics. We define Instance min-max Normalization (IN)
and Instance Standardization (IS) in the following table.

Min-Max Standardization

Global GN (X
j
i ) =

X j
i −min(X)

max (X)−min(X) GS(X
j
i ) =

X j
i −mean(X)
std (X)

Instance IN (X
j
i ) =

X j
i −min(Xi )

max (Xi )−min(Xi )
IS(X

j
i ) =

X j
i −mean(Xi )

std (Xi )

Table 1: Normalization methods

2.2 Why does normalization matter?
Most existing approaches use the instance standardization (also
called z-normalization) to pre-process time series. For instance UCR
archive included only z-normalized datasets until a recent update.
The incentive behind this choice is that similarity between two
time series can be meaningless without proper pre-processing in
presence of an offset or a scale variation [14]. But we argue that
this choice might not be optimal for every domain, especially when
the scale or the offset are discriminative.

It can be seen on a toy example: in Figure 1a, without normaliza-
tion, a euclidean or DTW-based classifier would not discriminate
the classes properly: dotted time series is classified in the same
class. With classes from Figure 1b, instance standardization will
have the opposite effect. One can see that there is no obvious choice
of normalization and for more complex data, balancing shape and
scale information is challenging.

2.3 Non-linear scaling
Another common data transformation is non linear scaling. Non-
linear scaling is a common pre-processing technique for non normal
data. The main motivation is to make data more normal, making
it easier to manipulate. Box-Cox transformation is a classical tech-
nique and its formula is:

boxcox(x) =

{
(X j

i )
λ−1
λ if λ > 0

log(X j
i ), if λ = 0

The Box-Cox test finds the optimal λ to make data the most
normal as possible. The optimal λ is computed globally or per

(a) Shape is discriminative

(b) Scale is discriminative
Figure 1: Toy examples

instance depending on the subsequent normalization. It has been
succesfully used for time series forecasting [13], but not applied to
TSC to the best of the authors’ knowledge.

3 CONVOLUTIONAL NEURAL NETWORKS
FOR TSC

TSC is defined as the task of training a classifier on a dataset {X,Y}
mapping a time series to a class. A recent review has experimented
different architectures [8] and pointed out ResNets [17] and Fully
Convolutional Neural Networks to be the most efficient across
datasets. We will briefly introduce DenseNets, a new architecture
inspired from image models that we apply to time series and discuss
how normalization impacts neural networks.

3.1 DenseNets for TSC
A deep neural network is a composition of parametric functions
(layers) aiming to predict a target from an input for a given task.
Convolutional Neural Networks (CNN) are a specific neural net-
work made of convolutional layers. Convolutional architectures
have shown good results as they extract meaningful local features
from their input. A simple CNN is a composition of convolutional
and fully connected layers. Namely it can be expressed as

ỹ = fd (fd−1(...(f1(x))) (1)

where each f. is a non-linear transformation. Convolutional layers
and intermediate pooling are successively applied in order to extract
features at different scales before a global pooling operation and a
fully connected layer that predicts a label. We present an architec-
ture inspired from the computer vision community [6] that has not
been proposed for TSC to the best of the authors’ knowledge.

DenseNets. We introduce skip connections from different levels
in the network through concatenation. Namely, the kth layer re-
ceives the outputs of some preceding layers as an input ; denoting zk
the output of the kth layer and [zk−m , ..., zk−1] the concatenation
of them previous layers, the output of the kth layer is

zk = fk ([zk−m , ..., zk−1])

DenseNets allow to produce more complex information from
layer outputs than ResNets. On the other hand, they tend to have
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Figure 2: DenseNet: each block is made of successive convolutions and skip connections ended by a bottleneck convolution

larger layer inputs, due to the successive concatenations, depend-
ing on the numberm of preceding layers being concatenated. In
our architecture, we use bottleneck layers: after a dense block, a
bottleneck layer brings back the number of inputs to the initial
number of feature maps, as described on Figure 2. Hence for a fixed
number of feature maps K and maximummmax size of dense block,
the number of inputs never exceed K ×mmax .

Another novelty of our architecture is to explicitly feed features
from different scales to the final predictor. Namely we concatenate
the outputs of each dense block to create the input of the last
fully connected layer. As the number of dense blocks is relatively
small, the input size stays tractable. In the next section, we discuss
normalization for neural networks and propose solutions to balance
shape and scale information.

3.2 Data normalization for Neural Networks
In theory, it is rarely strictly necessary to standardize the inputs
of a neural network and most pre-processing tricks are hard to
analyze properly. In practice, standardization allows non-fittable
networks to be fittable [9] . Recently batch normalization [7] has
had a great impact on neural network training and works as a
speedup technique for neural networks.

One can note that global standardization is simply a rescaling of
the data and could be replaced by an adequate weight initialization.
As seen in Section 2, for some data we would like to use information
from the scale of each time series without compromising informa-
tion derived from local shapes. Hence we propose two solutions to
balance those pieces of information.

FeatNet. The first solution is to create a new architecture with
two entries as summarized in Figure 3a. One entry corresponds to
the instance-normalized time series, which is passed into a con-
volutional architecture. At the fully-connected level, the output
of the convolutional blocks is concatenated with the other entry,
containing the scale information from the time series (mean and
standard deviation for standardization ; minimum and maximum
for min-max normalization)

Ens-Norm Network. The second solution is to create an architec-
ture with different entries corresponding to the input time series,
normalized and scaled differently for each entry. Each entry is
passed into convolutional blocks with no weight sharing. The out-
puts are then concatenated into a fully connected layer that gives
the final prediction. Creating separate channels with different infor-
mation is similar to the Multi-Channel Neural Network introduced
in [19].

(a) FeatNet

(b) EnsNormNet

Figure 3: Proposed architectures

4 EXPERIMENTS
We ran experiments on two examples: a benchmark TSC archive and
an appliance recognition problem. The second dataset motivated
this study as it is a domain where both shape and scale of the data
are discriminative.

4.1 UCR archive
Data. Firstly we use the UCR archive [5] to attest the impact of

normalization techniques across datasets with varying character-
istics. The first version of the archive contains only datasets that
have already been standardized per instance but 37 of the more
recent datasets are not instance standardized and are included in
this study.

Architecture. Time series lengths and training size vary across
datasets but we keep the same architectures and training param-
eters for every dataset. It is made of 3 dense blocks, each of them
composed of 3 convolutional layers with 64 filters of size 7, 5 and 3.
It may not be optimal but we emphasize that our goal is not to get
the best performance for each dataset but to show that normaliza-
tion has a tremendous impact on TSC and illustrate that our new
architecture can benefit from ensembling two normalizations. Each
complete architecture, implemented with Keras-Tensorflow, can be
found in Appendix A.

Experiments. For each dataset, we have trained 8 neural networks
corresponding to the following scenarios. When it is not specified,
the architecture used is the DenseNet.

• Global Standardization (GS)
• Global min-maxNormalization (GN)
• Instance Standardization (IS)
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• Instance min-max Normalization (IN)
• Box-Cox Transformation + Global Standardization (BC-GS)
• Box-Cox Transformation + Instance Standardization (BC-IS)
• Instance Standardization + FeatNet (IS-Feat)
• Instance Standardization - Global Standardization + Nor-
mEnsNet (IS-GS-NEN)

Each of them was run 10 times with different seeds for weight
initialization and we report the mean classification accuracy in
Appendix B. Training times differ for each dataset but a complete
run (8 networks on 37 dataset) takes approximately 5 hours on our
GPU cluster.

Figure 4: Rank distribution of eachmethod over the 37 UCR
un-normalized datasets. Each bar corresponds to a method.
Red shows a high rank and blue a low rank.

Results. In order to compare with existing methods, we report
the results available online [1] using Nearest Neighbour classifiers
associated with Euclidean Distance (ED-NN), Dynamic Time Warp-
ing (DTW-NN) and Dynamic TimeWarping with a learned window
(WDTW-NN). The full results are available in Appendix B and we
plot the rank distribution of each algorithm on Figure 4.

The first observation is that different data preparations affect the
performance of a convolutional neural network. Moreover there
is no universal choice of normalization to get the best classifica-
tion accuracy. For most datasets, the Ens-Norm Network achieves
better accuracy than the simple DenseNets, which indicates that
this architecture is able to derive the best from both standardiza-
tions. Standardization seems to be more efficient than min-max
normalization in general. Finally, non-linear scaling with box-cox
transformation does not bring any significant improvement for
most domains.

Overall we achieve slightly better results than the existing near-
est neighbour classifiers. We do believe that better accuracies can
be achieved, notably with ensemble-based methods, whose voting
scheme could even include neural networks. We conducted experi-
ments with ResNets and FCN architectures that generally did not
lead to better accuracies but showed similar observations for the
impact of pre-processing. We plan to produce a full comparison in
a future work.

4.2 Appliance recognition
A field where time series scale is of particular importance is energy
consumption. We study the example of appliance recognition us-
ing a load monitoring dataset: REFIT [12]. Appliance recognition
corresponds to classify devices given their consumption profiles.
REFIT project monitors household electricity consumption in 20
homes in the UK.

Figure 5: REFIT: extracted signatures and classes (y-scales
are different)

From each device in each house, we extract appliance signatures
(consumption pattern when the device is on). Our task is to effi-
ciently classify appliance signatures. We only work on devices with
sufficient training data. As the sampling is not uniform, we uni-
formly resample data every 10s . After extracting signatures, they
are cropped or padded with zeros so that every signature has the
same length 900, corresponding to 2 hours.

The same notations as in previous experiments are kept. Ar-
chitectures and training procedures are the same. The results are
produced using a leave-one-out procedure, using all houses except
one for training and testing on the remaining one so that devices
in the test set have not been seen during training.

In Table 2, we represent the macro F1-score for different clas-
sifiers. One can see that the Norm-Ens-Net performs the best. In
Appendix C, we report confusion matrices for GS, IS and IS-GS-
NEN. One can see that instance standardization has a bad impact
on classification performance, especially for discriminating devices
similar in shape such as Toaster/Kettle/Microwave or Computer/TV.
At the same time, GS is not optimal for separating Dishwashers
from Washing Machines for instance. For this application, we high-
light that IS-GS-NEN gets the best of both worlds.

GS GN IS IN
78,37 (0,63) 77,37 (0,58) 75,69 (0,89) 75,48 (0,76)
BC-GS BC-IS IS-Feat IS-GS-NEN

77,99 (0,43) 75,83 (0,73) 76,11 (0,97) 83,39 (0,54)
Table 2: F1 score (%) for different architectureswith standard
deviation over 10 runs

5 CONCLUSION AND FUTUREWORK
Instance standardization (or z-normalization) should be carefully
used as a pre-processing step for TSC. Depending on the application
better normalization techniques can be used. A first option is to
try different methods and chose the best one. Ensembling differ-
ent normalizations seems to be a robust alternative. We showed
for electricity datasets that an ensemble can extract meaningful
information. This approach can also be extended to other fields.

Our future work will study multivariate time series, as normal-
ization techniques are even more crucial in this case. We plan to
conduct a more general work to confirm this first intuitive and ex-
perimental study. In particular, we assume that normalization has
effects on both data characteristics and neural network optimization
procedure which are hard to quantify.
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A ARCHITECTURES
For each convolution, elu is used as an activation function. The last activation is a so f tmax . Moreover, each bottleneck convolution is
associated with BatchNormalization. Weight initialization is done using Glorot procedure. The chosen optimizer is Adam with early stopping
and decay.

Layers Input shape Output shape Filter shape
Input Time series of length l

Conv (1) l × 1 l × 64 1 × 7
Conv (2) l × 64 l × 64 64 × 5
Conv (3) l × 128 l × 64 128 × 3
Conv (4) l × 192 l × 64 192 × 3
Pooling (1) l × 64 l/2 × 64 2
Conv (5) l/2 × 64 l/2 × 64 64 × 7
Conv (6) l/2 × 64 l/2 × 64 64 × 5
Conv (7) l/2 × 128 l/2 × 64 128 × 3
Conv (8) l/2 × 192 l/2 × 64 192 × 3
Pooling (2) l/2 × 64 l/4 × 64 2
Conv (9) l/4 × 64 l/4 × 64 64 × 7
Conv (10) l/4 × 64 l/4 × 64 64 × 5
Conv (11) l/2 × 128 l/4 × 64 128 × 3
Conv (12) l/4 × 192 l/4 × 64 192 × 3
Pooling (3) l/4 × 64 l/8 × 64 2
Merge Pooling (1)+(2)+(3)
Dense 56l nclass 56l

Table 3: DenseNet architecture used in both exper-
iments

Layers Input shape Output shape Filter shape
Input (1) Instance-standardized time series
Conv (1) l × 1 l × 64 1 × 7
Conv (2) l × 64 l × 64 64 × 5
Conv (3) l × 128 l × 64 128 × 3
Conv (4) l × 192 l × 64 192 × 3
Pooling (1) l × 64 l/2 × 64 2
Conv (5) l/2 × 64 l/2 × 64 64 × 7
Conv (6) l/2 × 64 l/2 × 64 64 × 5
Conv (7) l/2 × 128 l/2 × 64 128 × 3
Conv (8) l/2 × 192 l/2 × 64 192 × 3
Pooling (2) l/2 × 64 l/4 × 64 2
Conv (9) l/4 × 64 l/4 × 64 64 × 7
Conv (10) l/4 × 64 l/4 × 64 64 × 5
Conv (11) l/2 × 128 l/4 × 64 128 × 3
Conv (12) l/4 × 192 l/4 × 64 192 × 3
Pooling (3) l/4 × 64 l/8 × 64 2
Input (2) µi , σi
Merge Pooling (1)+(2)+(3) + Input (2)
Dense 56l + 2 nclass 56l + 2

Table 4: FeatNet architecture used in both experi-
ments

Layers Input shape Output shape Filter shape Layers Input shape Output shape Filter shape
Input (1) Global-Standardized TS Input (2) Instance-Standardized TS
Conv (1) l × 1 l × 64 1 × 7 Conv (13) l × 1 l × 64 1 × 7
Conv (2) l × 64 l × 64 64 × 5 Conv (14) l × 64 l × 64 64 × 5
Conv (3) l × 128 l × 64 128 × 3 Conv (15) l × 128 l × 64 128 × 3
Conv (4) l × 192 l × 64 192 × 3 Conv (16) l × 192 l × 64 192 × 3
Pooling (1) l × 64 l/2 × 64 2 Pooling (4) l × 64 l/2 × 64 2
Conv (5) l/2 × 64 l/2 × 64 64 × 7 Conv (17) l/2 × 64 l/2 × 64 64 × 7
Conv (6) l/2 × 64 l/2 × 64 64 × 5 Conv (18) l/2 × 64 l/2 × 64 64 × 5
Conv (7) l/2 × 128 l/2 × 64 128 × 3 Conv (19) l/2 × 128 l/2 × 64 128 × 3
Conv (8) l/2 × 192 l/2 × 64 192 × 3 Conv (20) l/2 × 192 l/2 × 64 192 × 3
Pooling (2) l/2 × 64 l/4 × 64 2 Pooling (5) l/2 × 64 l/4 × 64 2
Conv (9) l/4 × 64 l/4 × 64 64 × 7 Conv (21) l/4 × 64 l/4 × 64 64 × 7
Conv (10) l/4 × 64 l/4 × 64 64 × 5 Conv (22) l/4 × 64 l/4 × 64 64 × 5
Conv (11) l/2 × 128 l/4 × 64 128 × 3 Conv (23) l/2 × 128 l/4 × 64 128 × 3
Conv (12) l/4 × 192 l/4 × 64 192 × 3 Conv (24) l/4 × 192 l/4 × 64 192 × 3
Pooling (3) l/4 × 64 l/8 × 64 2 Pooling (6) l/4 × 64 l/8 × 64 2
Merge Pooling (1)+(2)+(3)+(4)+(5)+(6)
Dense Class prediction

Table 5: EnsNormNet architecture: dense blocks are applied in parallel before being merged
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B FULL RESULTS ON UCR DATA

Dataset ED-NN WDTW-NN DTW-NN GS GN IS IN BC-GS BC-IS IS-Feat IS-GS-NEN
AllGestureWiimoteX 51,57% 71,71% 71,57% 77,89% 68,34% 73,34% 66,89% 76,83% 67,14% 68,34% 77,83%
AllGestureWiimoteY 56,86% 73,00% 72,86% 72,60% 72,91% 73,34% 72,26% 75,80% 68,86% 72,91% 72,91%
AllGestureWiimoteZ 45,43% 65,14% 64,29% 70,06% 67,49% 69,40% 66,20% 75,80% 50,86% 67,49% 76,31%
BME 83,33% 98,00% 90,00% 92,13% 92,13% 95,33% 96,27% 94,27% 99,07% 94,53% 96,27%
Chinatown 95,36% 95,36% 95,65% 97,97% 97,97% 97,97% 97,97% 97,68% 97,97% 97,97% 98,26%
Crop 71,17% 71,17% 66,52% 78,30% 74,52% 76,01% 74,90% 78,72% 75,19% 74,52% 79,26%
DodgerLoopDay 55,00% 58,75% 50,00% 55,00% 40,75% 61,25% 42,75% 49,25% 40,75% 55,75% 62,75%
DodgerLoopGame 88,41% 92,75% 87,68% 86,96% 88,41% 84,35% 85,65% 88,41% 83,33% 88,41% 88,26%
DodgerLoopWeekend 98,55% 97,83% 94,93% 88,12% 95,36% 92,75% 92,75% 89,71% 93,77% 95,36% 92,75%
EOGHorizontalSignal 41,71% 47,51% 50,28% 61,27% 58,62% 58,62% 59,12% 59,12% 52,98% 61,49% 61,82%
EOGVerticalSignal 44,20% 47,51% 44,75% 48,67% 46,35% 46,24% 44,20% 46,35% 42,38% 49,12% 48,84%
Fungi 82,26% 82,26% 83,87% 53,87% 68,06% 64,84% 72,37% 28,82% 49,78% 68,06% 64,52%
GestureMidAirD1 57,69% 63,85% 56,92% 59,54% 55,85% 62,15% 58,15% 58,15% 59,23% 59,23% 63,08%
GestureMidAirD2 49,23% 60,00% 60,77% 46,46% 57,23% 59,23% 54,46% 42,31% 42,92% 59,23% 59,85%
GestureMidAirD3 34,62% 37,69% 32,31% 19,85% 30,31% 33,54% 30,77% 21,38% 26,46% 34,46% 34,31%
GesturePebbleZ1 73,26% 82,56% 79,07% 59,88% 63,37% 84,19% 62,21% 62,33% 76,74% 84,77% 84,42%
GesturePebbleZ2 67,09% 77,85% 67,09% 59,62% 55,06% 73,80% 61,01% 67,97% 73,42% 71,27% 74,43%
GunPointAgeSpan 89,87% 96,52% 91,77% 98,67% 99,37% 99,56% 99,62% 98,61% 98,10% 99,37% 99,62%
GunPointMaleVersusFemale 97,47% 97,47% 99,68% 99,81% 99,37% 99,05% 99,37% 99,68% 96,96% 99,37% 99,81%
GunPointOldVersusYoung 95,24% 96,51% 83,81% 100,00% 96,70% 97,08% 96,38% 100,00% 95,11% 96,70% 99,87%
HouseTwenty 66,39% 94,12% 92,44% 94,12% 92,44% 42,02% 42,02% 89,92% 42,02% 42,02% 94,79%
InsectEPGRegularTrain 67,87% 82,73% 87,15% 100,00% 99,68% 97,75% 98,96% 100,00% 96,79% 99,68% 100,00%
InsectEPGSmallTrain 66,27% 69,48% 73,49% 35,74% 35,74% 95,98% 47,39% 35,74% 90,68% 96,71% 96,47%
MelbournePedestrian 84,82% 84,82% 79,06% 96,44% 90,25% 90,53% 90,43% 97,02% 90,36% 95,31% 97,11%
PLAID 53,63% 83,61% 83,80% 83,99% 83,09% 84,21% 84,25% 83,09% 69,42% 83,09% 84,25%
PickupGestureWiimoteZ 56,00% 66,00% 66,00% 76,00% 66,80% 70,40% 60,80% 72,40% 47,60% 70,00% 75,60%
PigAirwayPressure 5,77% 9,62% 10,58% 18,17% 6,15% 10,48% 6,63% 15,10% 10,87% 13,56% 17,40%
PigArtPressure 12,50% 19,71% 24,52% 51,06% 16,73% 47,50% 19,52% 49,90% 44,33% 16,73% 52,02%
PigCVP 8,17% 15,87% 15,38% 47,21% 18,65% 50,58% 19,33% 46,44% 52,69% 51,15% 52,31%
PowerCons 93,33% 92,22% 87,78% 95,44% 89,89% 90,56% 89,22% 94,78% 89,00% 89,89% 96,89%
Rock 84,00% 84,00% 60,00% 71,60% 62,00% 59,60% 62,00% 73,20% 62,40% 62,00% 62,00%
SemgHandGenderCh2 76,17% 84,50% 80,17% 79,67% 65,83% 83,40% 35,00% 82,93% 81,77% 82,77% 84,00%
SemgHandMovementCh2 36,89% 63,78% 58,44% 54,53% 40,62% 44,71% 39,24% 49,60% 46,31% 40,62% 39,24%
SemgHandSubjectCh2 40,44% 80,00% 72,67% 71,69% 70,98% 74,71% 73,24% 70,27% 69,29% 72,22% 73,24%
ShakeGestureWiimoteZ 60,00% 84,00% 86,00% 88,40% 88,40% 84,40% 86,40% 87,20% 72,40% 88,40% 89,20%
SmoothSubspace 90,67% 94,67% 82,67% 98,00% 97,33% 96,53% 97,33% 98,67% 96,00% 97,33% 97,33%
UMD 76,39% 97,22% 99,31% 99,31% 98,61% 98,61% 98,61% 99,31% 99,31% 98,61% 99,31%

Table 6: Accuracies for each non-normalized UCR dataset

Figure 6: Rank distribution of each method over UCR non-normalized datasets. Each bar corresponds to a method. Red shows
a high rank and blue a low rank.
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C CONFUSION MATRICES FOR REFIT DATA

Figure 7: Confusion matrix with Global Standardization

Figure 8: Confusion matrix with Instance Standardization
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Figure 9: Confusion matrix with Ens-Norm-Net
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