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ABSTRACT
In this paper, we present a method for developing event signa-
tures from social media data. Social media posts like tweets contain
signals from social sensing. Our method describes how such sig-
nals can be extracted and analyzed to create the underlying event
signatures. We compared our proposed methodology with other
contemporary methods such as word2vec and time series analysis.

CCS CONCEPTS
• Information Systems → World Wide Web; • World Wide
Web→Web applications; •Web application→ Social Networks.
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1 INTRODUCTION
We propose a method for analyzing social sensing with wavelet
signatures for natural disasters based on social media posts. The
data we collected and analyzed are related to several recent natural
disaster events in the United States. In this paper, we demonstrate
that information belonging to every physical event sensed from
social media posts can be represented by the frequency distribution
of a list of ‘context words’ over a finite length of time. The proposed
approach transforms these ‘context words’ into time-dependent
signals containing a spectrum of frequencies and amplitudes that
vary with time. The process of creating word signals from tweets
explained in our previous work [1] where we also demonstrate
how the wavelet representation can be used in useful applications
such as real time prediction of event characteristics and trajectory.
By combining signal processing techniques with data science, we
intend to substantiate the hypothesis that a physical event on social
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media leaves an identifiable signature in the wavelet space. The
wavelet signatures are homogeneous for the same kind of events
and are different for events of different kinds. We use Twitter as
the platform for social sensing because tweets are sensitive to both
time and length of the context. We establish our findings with four
datasets from two types of natural disasters - hurricanes and flash
floods, collected from the recent events that occurred in the United
States: i) hurricane Michael (HM), ii) hurricane Florence (HF), iii)
flash flood in Arizona swimming hole (AZ), and iv) flash flood in
Cummins Falls state park (CF). We characterize both large scale
national disasters such as hurricanes and small scale local disasters
such as flash floods with signatures in time and frequency domains.

Subsequently, we demonstrate that multiresolution analysis with
Continuous Wavelet Transforms (CWT) can be used to identify
the signature of a physical event. We show that different events
can be separated through clustering the data in the wavelet space.
Although events of similar types are harder to separate as opposed
to those of different events, in both cases, we achieve superior
accuracy over baseline methods such as word embedding and the
basic word signals.

2 TIME-FREQUENCY REPRESENTATION
We collected tweets, each tweet was associated with a date and
time of its creation. The pre-processing of the data comprised of
a five-step process to build the vocabulary of context words that
are reflective of the event. Twitter is similar to a noisy sensor. The
pre-processing stage separates noise from the signals by adding
a filter to limit the data to meaningful inputs. We pre-process the
data by removing duplicate tweets, numbers, symbols, URLs and
stop words. We tokenized the filtered tweets into unigrams keeping
words only valid in English vocabulary.We use the time information
to create time-dependent word signals by binning them with a fixed
duration (∆t ). The start time of the j+1th bin was calculated by
tj+1 = tj + ∆t , where j = 1 . . .n. We chose document frequency
(d f ) as the amplitude of the word signals[8]. The d f of the ith

word for the jth bin is the number of tweets in bin j that contain
ui . ∆t is determined by observing the data variation as explained
in [1]. The word signals created from for flash flood datasets and
hurricane datasets are presented in fig. 1. CWT was applied on the

Figure 1: Signal representation of context words
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Figure 2: Time-Frequency Localization of two signals

word signals with Morlet wavelet [2], [7] as mother wavelet and a
preset number of scales.

3 EVENT CHARACTERIZATIONWITH
WAVELET SIGNATURES

A key contribution of this paper lies in finding the characteristics
of physical events using wavelets. To instantiate the idea of event
characterization, we present two cases with different characteris-
tics of non-stationary signals in both frequency and time domains
illustrated in fig. 2. The left two images represent the signals con-
taining 100 samples each. They are sampled with the same sampling
frequency and transformed with the same mother wavelet with
32 scales. The figures in the middle column reflect the wavelet
coefficients and the figures on the right are the spectrograms of
the signals to understand how the spectrum of frequencies vary
with time. The signal in the top row has a single peak in the time
axis which is anomalous to the rest. This results in higher energy
in the wavelet coefficients captured by the bright yellow vertical
cone in the middle. The spectrogram highlights two signals in the
frequency axis reflecting the low-frequency components and the
high-frequency components. The low frequency components re-
flected by the rectangle between frequency 0 to 0.1 are stronger.
The figures in the top row of fig. 2 is an example of a signal localized
in time. The signal showed in the bottom row of fig. 2 contains
periodically recurring peaks. The Fourier transform identifies the
main frequency which is shown by rectangles between frequency
0 to 0.1. The time, however, shows recurring instances when the
signal has is stronger. The spectrogram depicts that signal with the
recurring peaks is localized in frequency but not in time.

Ourmethodology usingwavelet signatures allows us to identify a
pattern in time-frequency localization of signals which can be used
to uniquely characterize their respective events. We performed an
exploratory analysis using Shannon Wavelet Entropy (SWE) with
scale and time on all four datasets to identify the signatures that can
characterize hurricanes and flash floods. The flash flood datasets
are collected from local, small scale disasters which caused flooded
withing minutes of hitting the land which lasted for a few days. On
the contrary, the hurricanes datasets are collected from large scale
national disasters which impacted multiple states and the flooding

lasted for weeks. Comparing with the word signals in fig. 1, the
flash flood datasets follow the characteristics the example in the top
row figures in fig. 2 and the hurricane datasets mimic the example
in the figures in the bottom row of fig. 2.

3.1 Scale Entropy
We calculate SWE for each scale over all the time components
to find the distribution of entropy over all scales. Let, j, k be the
scale and time components of a wavelet and Cj (k) be the wavelet
coefficient of signal s at time k and scale j , then the wavelet energy
Ej can be calculated by,

Ej =
∑
k

|Cj (k)|
2 (1)

Next, we calculate the The Relative Wavelet Energy (RWE) at
scale j by normalizing the energy at every scale by total energy. The
total energy is calculated by summing the energy over all scales,

Etotal =
∑
j
Ej (2)

RWE represents the distribution of wavelet energy across differ-
ent scales. RWE is at scale j can be retrieved by,

ρ j =
Ej

Etotal
(3)

SWE at scale j is then calculated by,

Sswej = −ρ j · loдρ j (4)

3.2 Time Entropy
To find a significant time duration where the signal has maximum
entropywe calculate SWE at every time bin. Let, j ,k be the scale and
time components of wavelet andCk (j) be the wavelet coefficient at
time k and between scales j1 to j2, then the wavelet energy Ej can
be calculated by,

Ek =

j=j2∑
j=j1

|Ck (j)|
2 (5)

The total energy can be calculated by,

Etotal =
∑
k

Ek (6)

The Relative Wavelet Energy (RWE) at scale j can be retrieved
by,

ρk =
Ek

Etotal
(7)

RWE represents the distribution of wavelet energy across differ-
ent scales. We can calculate SWE of a signal s at for a window w
by summing over the entropy of the RWE values of all the scales.

Tswek = −ρk · loдρk (8)
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Figure 3: Event signature

3.3 Observations
We observed the mean and standard deviation of Sswe for all four
datasets. There was a noticeable difference in behavior behaviors
between the hurricanes and the flash flood, as expected. From both
our hurricane datasets we observe that choosing a scale range is
important because the RWE and SWE are impacted by scale. The
signals in both HM and HF datasets, have significantly high energy
between scale 15 and 21 and hence can be localized in scale. The
entropy Sswe has a sharp increase between scale 15 to 21. The
Sswe has a downward trend after scale 21. On the other hand, the
flash flood data sets have no significant band with high intensity in
energy and entropy and hence cannot be localized in scale. They
have a sharp increase at the initial scales, 0 to 2 then stays steady
throughout.

Along with RWE, SWE for all the observations, we also analyze
the localization of a disaster in time by analyzing the mean and the
standard deviation of theTswe . Following our previous assumption
that the local small scale disasters are localized in time, we observe
a sharp rise in the RWE and SWE in AZ and CF dataset between
day 2 and day 4. However, for the hurricane datasets, we do not
see any time localization. Even though there is a slight bump on
the Tswe in the first couple of days in hurricane Michael, it did not
give us any meaningful range because for large scale disasters the
tweet flow stays high beyond a week.

4 EVENT SEPARATIONWITH CLUSTERING
In this section, we follow the process flow given in fig. 4 to distin-
guish events from a fused sample. As shown in the architecture we
simulate the cases by taking samples from each event and aligning
them at the same time or with a time shift. For similar event sam-
ples, we apply the pipeline on both the hurricane and flash flood
data sets. For different events, we take a hurricane sample and a
flash flood sample as the inputs. The samples from two events are
then fused together to create one list of vocabulary. The vocabulary
is then converted into word signals with bins created from the first
and last date of the simulated time line. The bin duration is kept the
same for all four cases for comparison. The setup for the problem

is the four different situations to identify and separate two ongoing
events from their respective tweets. The assumption behind this
design is that each event sample will have their own word distribu-
tion which follows the distribution by the actual incidents. These
distributions are time-sensitive which is why the shift in time will
have an impact on the clustering. The shift will also have an impact
in the energy of the coefficients which will separate them. These
cases are:

(1) Same Time - Similar Events We align the two random
samples from similar events on the exact same timeline. This
is the hardest of the four to separate because there is no
distinction coming from the time components and the word
distribution from similar events are also very similar.

(2) Time Shift - Similar Events We align the two random
samples from similar events with a time shift less than the
total duration of the samples so that there is some overlap.
In this case, the factor that can create good clusters mostly
come from time. The context words that are unique to an
event will drive the force of the cluster separation.

(3) Same Time - Different EventsWe align two random sam-
ples from two different events on the same timeline. The

Data Fusion

Vocabulary

Wavelet 
Features

Time Series 
PCA

Word 
Embedding

Event 1 Event 2

Clustering

Document 
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Figure 4: Process flow for event separation
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Figure 6: Event separation

distinct factors for this case can come from the frequency
spectrum of each event along with the word distribution.

(4) Time Shift - Different Events We align two random sam-
ples from two different events with a time shift with some
overlap. If the events have completely different word distribu-
tions, then this is the best case for cluster separation because
we would get two completely different set of words being
reflected in two different time settings and words belonging
to the same event will have similar representations.

4.1 K-means Clustering
K-means clustering algorithm is a simple, robust algorithm that
partitions observations into k clusters by comparing the distance
between the features with the cluster centroids. The cluster cen-
troids are adjusted through an iterative refinement technique so
that all observations that are clustered in one group is nearest to
the centroid of that cluster. We apply the K-means algorithm with
Euclidean distance as the distance metric to compare our feature
sets (i.e., time entropy, scale entropy) and the baselines (basic word
signals and word2vec [5]) for efficient context separation by word
clusters. Word2vec is a shallow neural network based probabilistic
model wich creates word embeddings. We compute word embed-
dings for length of fifty. We reduce the dimensions of the time
entropy, scale entropy and baseline word signals with Principal
Component Analysis (PCA). For validation, the documents were
assigned to our word cluster using a modification of information
bottleneck method [6]. Instead of building a clustering algorithm
from probabilities, we just use the clusters achieved from K-means.
We calculate the accuracy of the labels of the assigned documents as
the performance metrics to compare the features, where accuracy
=

Number of correctly identified instances
Number of total instances

4.2 Results
The results of the four cases are presented in fig. 6. In the first case
of ‘same time -similar events’, none of the features achieve good
accuracy because the word distributions are very similar in both
the samples. In the second experiment, ‘time shift - similar events’
- the time entropy for both hurricanes and flash floods performs

best where the flash floods achieve 96% accuracy outperforming the
baseline word signals which achieves 70% accuracy. In the third case,
‘same time - different events’, our feature scale entropy outperforms
the best performing baseline word2vec with 60%. In the last case,
‘time shift - different events’, time entropy achieves 98% accuracy
outperforming word2vec. It is obvious that among the baselines, the
time shift has very little impact on word2vec. However, features
such as time entropy and baseline time series PCA are sensitive to
time and present much better results when the data is shifted.

5 RELATEDWORK
We were particularly motivated by the work in [8], where the
authors used a mash-up of signal processing techniques with text
mining techniques on twitter posts for real-time event detection. In
social-media analysis, it is important to utilize the information with
both time and frequency which motivated researchers to analysis
social-media data with wavelets. Content-based clustering was used
in [3], [4] to find temporal patterns in social media. The authors
of [3] find a diversity of content where diversity is defined by a
change in entropy in a different spectrum of the wavelets created
from time dependents signals of content. The authors converted
time-dependent signals of clicks, hash-tags, and phrases to wavelets
and developed a clustering algorithm K-Spectral Centroid (K-SC)
to cluster them to find temporal pattern [4].

6 CONCLUSION
This paper contains a novel method that demonstrates that physical
events can be characterized by wavelet signatures. We show that
wavelet signatures can be used to distinguish events from a fused
dataset. Two co-occurring events are hard to separate because of
the lack of distinct features whereas different events with a time
shift are the easier to separate. It is also visible that most of the
wavelet features work better than other current approaches. Our
future work includes finding more signatures for different events,
using signatures for transfer learning and building hybrid models
mixing probabilistic features with wavelets.
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