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ABSTRACT
We investigate anomaly detection in Cyber-Physical System (CPS),
where anomalies are attacks to CPS to disrupt the operations of
critical infrastructures. We use the Secure Water Treatment (SWaT)
systems dataset, where normal and attack states are simulated in
the water tanks. Among different types of anomalies, we focus on
detecting the contextual anomalies, which can be challenging to
detect with the Out-Of-Limit threshold method. Recent research
shows promising results in detecting anomalies from analyzing er-
ror distributions from the machine learning classifier. Similarly, we
statistically analyze prediction error patterns from Recurrent Neu-
ral Network (RNN) and Mixture Density Network (MDN) classifiers
to detect anomalies. First, we generate anomaly scores with Local
Outlier Factor (LOF) and remove point anomalies. With the fixed
window size, an empirical probability distribution is estimated, and
we apply the sliding window to measure the difference of proba-
bility distributions between the other windows. To measure the
difference efficiently between anomalies and normal data, we use
Kullback-Leibler divergence. Our preliminary result shows that we
can effectively detect contextual anomalies compared with Nearest
Neighbor Distance (NND) approach.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection.
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1 INTRODUCTION
Anomaly detection in Cyber-Physical System (CPS) investigates
the identification of unusual behaviors that are not exhibited under
normal operating condition. In CPS, these anomalies may result
from attacks on the control, network, or cyber-physical elements.
At the same time, temporal high spike anomalies may be caused
by hardware faults, operator errors, or even misconfigurations in
the software. Therefore, detecting and separating anomalies from
these temporal glitches or point anomalies are paramount and
challenging tasks because false positives can be costly. For exam-
ple, a false alarm can cause all critical running infrastructures to
stop for inspection, or evacuate operators or people due to the
possible dangers that can be caused by the attacks. Therefore, the
capability to detect true anomalies apart from temporal operational
glitches is critical. Typically, an anomaly detection technique can be
a rule-based or statistical learning-based approach. The rule-based
approach typically employs the Out-Of-Limit (OOL) threshold so
that values measured above the OOL are considered as anomalies.
Statistical machine learning based approaches typically fit a model
to the data and detect anomalies, if prediction error is greater than
the threshold. However, in many practical situations, there exist
measurements that are greater than a threshold value but are nor-
mal. Also, there will be contextual anomalies, which are less than
the threshold, but they are abnormal.

In this work, we hypothesize that these anomalies are originated
from other probability distributions than the original nominal data
distribution because they are cyber attacks. Therefore, rather than
using pre-defined threshold values, we aim to investigate patterns
in time series and analyze its empirical probability distribution to
detect contextual anomalies. We propose a statistical learning based
approach to focus on detecting contextual anomalies. We take a
similar approach to that of Machine Learning Anomaly Detection
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(MLAD) by Kaspersky Lab [6, 7], which exploits correlations in
industrial traffic signals. For example, MLAD can train a recurrent
neural network to recognize signal behavior under normal oper-
ating conditions, and the data is presented as a multivariate time
series. Next, MLAD predicts the values of all signals in real time for
a particular future time interval and compares them with observed
values. If the prediction error is more significant than a statistically
matched threshold defined at the training stage, MLAD can detect
anomalies.

We use the dataset from the Secure Water Treatment (SWaT)
testbed [12] collected by iTrust, Centre for Research in Cyber Se-
curity, Singapore University of Technology and Design. Then, we
generate anomaly scores with the Local Outlier Factor (LOF) and
calculate the probability distribution to detect the contextual anom-
alies. With the fixed window size, we estimate the empirical proba-
bility distribution and slide the window to measure the difference of
probability distributions between previous and current time series.
To measure the difference efficiently between time windows, we
employ Kullback-Leibler (KL) divergence. Our preliminary result
shows that we can effectively detect contextual anomalies based
on error distribution compared to the previous Nearest Neighbor
Distances (NND) approach [20].

2 RELATEDWORK
Anomaly detection on multivariate time series data: Anom-
aly detection in multivariate time series data is a challenging task,
and numerous approaches have been proposed in the past few
years to tackle this problem. When identifying anomalies in Cyber-
Physical Systems (CPS), the first-order approach can be imple-
mented by building a knowledge base, when comprehensive and
accurate domain knowledge is available [14, 15, 18, 19]. However,
in modern CPS, developing a knowledge base from a large number
of variables in a complex CPS is challenging. Recently, data-driven
approaches such as deep-learning or unsupervised clustering-based
methods, which do not require broad and specific knowledge of the
domain, have been developed [5, 8–11]. These methods can learn
and derive information and patterns from data, not using much
expert domain knowledge.

Anomaly detection with Deep learning: As an extension of
the data-driven approach, deep learning has been applied for de-
tecting anomalies in time series data. Malhotra et al. [17] proposed
a Long Short TermMemory (LSTM) networks based on the Encoder
Decoder scheme for anomaly detection. This model learns to recon-
struct ‘normal’ time series behavior and uses reconstruction error to
detect anomalies. With this model, they were able to achieve better
generalization capability than distance-based methods. To elimi-
nate the need for a complicated sampling method Zhai et al. [21]
developed Deep Structured Energy-Based Models (DSEBMs), which
connects Energy-Based Models (EBMs) with a regularized autoen-
coder. The model uses energy scores and reconstruction errors to
decide anomalies. However, despite their effectiveness, these meth-
ods cannot jointly analyze temporal dependency, noise resistance,
and the interpretation of the severity of anomalies [21]. On the
other hand, Zhang et al. [22] made Multi-Scale Convolutional Re-
current Encoder-Decoder (MSCRED) solve these problems, where
it constructs multi-scale signature matrices to characterize multi-
ple levels of the system statuses in time steps. However, most of

Figure 1: Example of contextual anomalies (red arrow) that
are below the threshold (red dotted line), where the X-axis
indicates time instances and the Y-axis is predicted error
from neural networks. Thus, contextual anomalies are not
detected by the OOL method.

the deep learning-based methods resort to some types of thresh-
olding (Out-Of-Limit) to determine anomalies with the predicted
error or reconstruction error. Determining anomaly from error
distributions: To detect contextual anomalies, Machine Learning
Anomaly Detection (MLAD) by Kaspersky Lab [6, 7] was proposed
to explore correlations in industrial traffic signals. MLAD trains
the RNN to recognize signal behaviors under normal operating
conditions and predicts the values of all signals in real time for a
particular future time interval. If the prediction error is more signif-
icant than a statistically matched threshold defined at the training
stage, MLAD detects anomalies. In our work, we also explore the
distributions of errors from RNN, because the probability density
function (PDF) of errors can express those anomalies as a value
close to the mean. In other words, the PDFwith anomalies in a given
time window will have a high spike at the mean value, making it
different from the PDF with normal data. Therefore, we expect that
we can improve the detection of contextual anomalies by lever-
aging and comparing the distance between PDFs from normal vs.
abnormal data. In our study, we use Kullback-Leibler divergence,
where KL divergence uses a distribution instead of a single data
point. Therefore, it is useful to detect a continuous attack that is
close to mean as shown by other research [1].

3 OUR APPROACH
The goal of our approach is to predict the values of signals from
error distributions of neural networks we trained from the CPS
dataset. Specifically, we examine if the prediction error is more
significant than a statistically matched threshold defined at the
training stage, we can detect anomalies. The main difference from
MLAD [6, 7] is that we first remove point anomalies and then apply
KL divergence to separate the anomalous PDF from the normal
PDF.

Dataset:We use data collected from the SecureWater Treatment
(SWaT) [12] collected by iTrust, Centre for Research in Cyber Secu-
rity, Singapore University of Technology and Design. The dataset
has 11 continuous water purification operations of the plant control
network in SWaT. Out of 11 days, the amount of normal operation
data is 7 days, while data collected from attack scenarios consist of
4 days. All network traffic, sensor, and actuator data in the control
network were collected during this period. The properties of this
SWaT dataset are summarized as follows:

• Network Traffic and Cyber-Physical Properties: Not only the
dataset contains all the network traffic captured through 11



Table 1: The P1 substation’s error dataset after applying LOF
on the extracted features, where the column time series rep-
resents the original features’ name.

Window
# Sum Mean ... Max Time

Series
Outlier
Score

1 -0.03 -0.03 ... 0.01 MV101 1.12
2 -0.06 -0.06 ... -0.14 P101 1.00
3 -0.08 -0.08 ... -0.08 P102 1.06

days, but it also includes all the values gathered from all the
51 sensors and actuators available in SWaT.

• Data Labels: Class label indicating either normal or abnormal
behavior.

• Attack Scenarios: SUTD has developed an attack model,
which can generate attacks in the dataset. The attack model
considers the intent space of a CPS as an attack model, where
36 attacks were launched throughout 4 days.

In particular, the water purification process in SWaT system is
composed of 6 sub-stations with more than 1 variable each, and it
is indicated as P1 through P6 as follows:

• P1: Raw water supply and storage
• P2: Pre-treatment
• P3: Ultrafiltration and backwash
• P4: De-Chlorination System
• P5: Reverse Osmosis (RO)
• P6: RO permeate transfer, UF backwash and cleaning

Error dataset generation from neural networks: We used a
Recurrent Neural Network (RNN) with Mixture Density Network
(MDN) [2] to obtain the prediction errors. The main benefit of using
MDN is that the model can learn the distribution of the data, where
a sequence of inputs may lead to several distinct future possibilities.
In order to predict normal sequences, the model is trained with
normal operation data in the SWaT dataset. The past 90 seconds
were used as an input to the model to predict the future 10 seconds
as an output. The prediction error is calculated by subtracting the
actual value with the predicted sequence value. The prediction error
of this model is then collected and saved as an error dataset.

Time window conversion:We created the same size time win-
dows and aggregated these values to extract features for each time
window such as sum, mean, median, min, max, kurtosis, and skew-
ness.

Detecting and removing point anomalies: We used Local
Outlier Factor (LOF) [3] to generate an outlier score for each time
window in the dataset as shown in Fig. 2 and then grouped the
outlier data separately from the nominal data using K-means clus-
tering [16]. The outlier group is then removed from the dataset
so that there are only the contextual anomalies left in the dataset.
Kullback-Leibler divergence: We assume that if an attack is
performed during normal operating condition, its distribution of
time series will be different from the distribution of times series in
normal operation conditions. Therefore, we use Kullback-Leibler
(KL) divergence [13] to measure the difference in distribution be-
tween normal vs. attack instance. Let X1 : (Ω, S) → (R,B) and
X2 : (Ω, S) → (R,B) be discrete random variables with mass f1
and f2, and let X be a support of X1. KL divergence DKL between

Figure 2: Local Outlier Factor score vs. the values of each
data feature in the same time window of P4 sub-station.

two different probability distributions f1 and f2 is defined as fol-
lows:

DKL(f1 | f2) B EX1

[
log

f1(X )

f2(x)

]
=

∑
x ∈X

f1(x) log
f1(x)

f2(x)
(1)

KL divergence has an important property: DKL(f1 | f2) = 0, if and
only if two distributions are the same almost everywhere. However,
it is different with the distance in that KL divergence is not sym-
metric, i.e. DKL(f1 | f2) , DKL(f2 | f1). Although KL divergence is
not a distance, its simplicity makes it useful for anomaly detection,
as shown in Afgani et al. [1]. In this work, we also employ KL
divergence to detect attack distributions and compared them to the
baseline threshold method.

4 EXPERIMENT
Local outlier detection and removal: In order to estimate the
manifest PDF of each time window, local outliers were removed,
which are typically high spike point anomalies. We used LOF with
lower bound (K-minimum) of 10 and upper bound (K-maximum)
of 20. Using LOF, we computed outlier scores for each time window.
The K-means clustering algorithm with K = 2, max runs = 10,
and Breдman diverдence is used as a distance metric to compute
the outlier scores between the cluster the dataset into outliers and
nominal clusters. These nominal clusters are further investigated to
detect the contextual anomalies. After deleting local outliers, time
series within the sub-stations were grouped. For example, 5 time
series from P1, includingMV 101, P101, P102, FIT 101 and LIT 101 in
SWAT data, were aggregated. We believe it will be more reliable to
utilize all aggregated sensor data than to consider only a single time
series when assuming sensors in the same station are correlated
with one another. Next, we present the resulting prediction errors
from neural networks in Fig. 3. Although point anomalies can be
observed as local spikes, it is challenging to distinguish contextual
anomalies visually from Fig. 3. For example,MV 101 and P101 have
numerous local spikes, which are not real anomalies. To eliminate
those spikes, the summation of absolute distances between these
time series is calculated as follows:

5∑
i,j

|Xit − X jt |, (2)



Figure 3: Prediction error produced from neural networks
measured at P1 (raw water supply and storage).

where t indicates a time variable. Given that each sensor can catches
signals simultaneously, Eq. 2 can capture the correlation between
the time series. Moreover, the moving average method is used to
produce a smoother time series, which can generate a more metic-
ulous PDF. Besides, the time series seasonal differencing [4] was
applied to offset seasonality. And data is transformed using calcu-
lation, Yt = Xt − Xt−l , where t is a time index and l is time lag.
Then, Yt has no seasonal effect with l lag size. Since the one hour
effect was strong, 3600 lag differencing was used. Lastly, we varied
window sizes (interval) of PDFs to detect contextual anomalies. KL
divergence calculation: To compute KL divergence, we set the
size of time series windows equally. Since a neural network model
generated the error data with the window size of 90, multiples
of 90 were used as the window size. With the data points within
the window, the empirical PDF was estimated using normal kernel
smoothing. Also, KL divergence was computed with the neighbor-
ing PDF by Eq. 1, where f1 is the previous PDF which represents a
prior distribution, and f2 is the current PDF, which is a posterior
distribution. As a result, KL divergence can measure correlations
between PDF’s within a 1 window time lag.

5 RESULT
We present anomaly detection performance using KL divergence
values for P1 (raw water supply and storage as defined in Section
3) with the window sizes of 180 and 360 in Fig. 4 and 5, respectively.
We used the fixed time interval of 10, where the X-axis is the time.
In the Y-axis, orange lines indicate KL divergence values, and blue
lines are actual attacks instances.We also plot the classical threshold
values (black lines) as a baseline method for comparisons in each
figure.

In our approach, we determine that the specific instance is an
anomaly when the KL divergence value is relatively high. As shown
in Figs. 4 and 5, there exists one contextual anomaly (shown as
solid blue rectangle), starting from 25, 000 to 29, 000. As shown
in each figure, our approach detects the contextual anomaly ef-
fectively, showing the high KL divergence value at the start and
the end of the contextual anomaly interval. However, we can ob-
serve that a classical baseline threshold method shown in a black
line fails to detect all the contextual anomalies. We also present

Figure 4: KL divergence with a window of size 180 and inter-
val 10measured at P1 (raw water supply and storage).

Figure 5: KL divergence with a window of size 360 and inter-
val 10measured at P1 (raw water supply and storage).

Figure 6: Contextual anomaly detection using the KL diver-
gence with a window of size 180 and interval 10 at P1 (raw
water supply and storage).

a more detailed zoomed region of contextual anomalies that oc-
curred between 25, 000 and 29, 000 in Fig. 6. As shown in Fig. 6,
KL divergence can detect the beginning and the end of the contex-
tual anomaly effectively. Comparison to NND: Additionally, we
simulated and compared our KL divergence to Nearest Neighbor
Distances (NND) based method by Yun et al. [20], whose research
aims to identify anomalies using Euclidean distance. Figures 7 and 8
show anomaly detection performance using NND for the same time
series measured at P1. The calculated NNDs are shown in orange
and actual attacks are shown in blue, and they are presented in
the Y-axis. Similarly, the X-axis represents the time. As shown in
Figs. 7 and 8, a blue rectangular region is a contextual anomaly,
and it cannot be detected by NND based approach. We believe that
the main reason for NND’s poor performance is because the Eu-
clidean distance can capture and produces a large distance for the
point anomalies. However, NND fails to produce a large distance
for contextual anomalies. Further research is needed to compare
a side-by-side anomaly detection performance between different
distance measures using more datasets. Therefore, our study needs



Figure 7: NND with window size of 1 measured at P1 (raw
water supply and storage).

Figure 8: NND with window size of 15 measured at P1 (raw
water supply and storage).

to develop a method to classify the contextual attack. Moreover, it
is difficult to compare the performance of KL divergence with the
classical methods, since it converts original data into shrink data
such as PDF. In this sense, a delicate measure to show performance
should be recommended. Nonetheless, the KL divergence method
can detect contextual anomalies quickly with a simple criterion.

6 CONCLUSION AND FUTUREWORK
We focus on detecting the contextual anomaly, using error patterns
produced from a Recurrent Neural Network (RNN) with Mixture
Density Network (MDN). Our work shows promising results in
detecting a contextual anomaly by measuring differences in the
distribution in a fixed time window, using KL divergence. We show
that measuring the difference in distributions is a more effective
way to detect anomalies than that of actual distances. However,
further research is needed to more effectively differentiate the cases,
where contextual and point anomalies coexist.
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