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ABSTRACT
Learning a good distance measure for distance-based classification

in time series leads to significant performance improvement in

many tasks. Specifically, it is critical to effectively deal with varia-
tions and temporal dependencies in time series. However, existing

metric learning approaches focus on tackling variations mainly

using a strict alignment of two sequences, thereby being not able

to capture temporal dependencies. To overcome this limitation, we

propose MLAT, which covers both alignment and temporal depen-

dencies at the same time. MLAT achieves the alignment effect as

well as preserves temporal dependencies by augmenting a given

time series using a sliding window. Furthermore, MLAT employs

time-invariant metric learning to derive the most appropriate dis-

tance measure from the augmented samples which can also capture

the temporal dependencies among them well. We show that MLAT
outperforms other existing algorithms in the extensive experiments

on various real-world data sets.

CCS CONCEPTS
• Mathematics of computing → Time series analysis; • The-
ory of computation → Machine learning theory; • Computing
methodologies→ Supervised learning by classification.
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1 INTRODUCTION
Streaming time series classifications play an increasingly important

role in activity recognition [15] and fraud detection [12]. However,

since the number of labels in streaming time series data is often

insufficient to build a high-quality classifier [22],k-nearest neighbor
(kNN), a non-parametric method, is widely used and it empirically

results in high accuracy in several applications [6].
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(b) Metric learning on window distances.
Figure 1: The effect of alignment to temporal dependency.
In accordance with this trend, many studies have been focused

on improving the performance of kNN by designing more appropri-

ate distance measures for a given data set. Recently, various time

series metric learning approaches [3, 14, 20] have been developed

to achieve this goal. Because variations in time series data, such as

sequence shifting and scaling, is one of the main challenges, the

existing algorithms consist of the two phases: (i) alignment and
(ii) metric learning. As shown in Figure 1(a), the subsequences of

the time series data are aligned in pairs to match the optimal time

steps (dotted line), rendering them robust to variation. Metric learn-

ing is subsequently conducted on the local distance Dl computed

from the matched time steps, which minimizes the distance of pairs

with the same label and maximizes for pairs with different labels.

However, since the local distance only considers the difference

between features at a single matched time step, metric learning on

the local distance does not capture temporal dependencies appearing
across consecutive time steps. Temporal dependency is known to

greatly enhance the performance of time series classifications [10].

For example, when we try to distinguish between forwards and

backwards from a set of motion images of a walking person, an

image of a single time step gives very limited information on the di-

rection, whereas a set of images of consecutive time steps provides

clear clues. It is, therefore, more effective to distinguish samples

with different labels by applying metric learning on the window
distance Dw computed from consecutive time steps (e.g., {t1, t2, t3}),
as shown in Figure 1(b). The existing algorithms miss out this op-

portunity as they focus on alignment at the expense of the temporal

dependencies. This calls for a new method that can achieve both

alignment and temporal dependencies.

In this paper, we propose a novel metric learning algorithm

for kNN in streaming time series, called MLAT (Metric Learning
considering Alignment and Temporal dependencies). To account for

both alignment and temporal dependency in learning a distance

measure, MLAT consists of the two main phases:
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Figure 2: Sliding window augmentation.

1. Sliding Window Augmentation: MLAT augments a given

time series using sliding window sampling [24] to achieve the

alignment effect while preserving the temporal dependencies.

As shown in Figure 2, by extracting all possible samples as sets

of consecutive time steps with a fixed length, the samples having

similar patterns can be well-aligned even without explicit time

step matching. At the same time, because consecutive time steps

are well preserved in a sample, MLAT can exploit the temporal

dependencies between them.

2. Time-InvariantMetric Learning: The temporal dependencies

between features of augmented samples are time-invariant, mean-

ing that the dependency of two features in a fixed time difference

is consistent regardless of their absolute temporal locations; i.e.,

the dependency of two features at time t and t +1 is equal to that
of the two features at time t +1 and t +2. Thus,MLAT tries to ful-

fill this inherent characteristic in learning distance metric using

the large margin nearest neighbor (LMNN) [13], constraining a

Mahalanobis matrix to be a Block Toeplitz [8] structure.

Extensive experiments on four real-world streaming time series

data sets indicate thatMLAT results in promising kNN performance.

2 RELATEDWORK
We briefly review several existing studies to find better distance

measures in time series data with respect to the following aspects: (i)
alignment to appropriately handle variation, and (ii)metric learning

to learn a better distance function.

2.1 Alignment
Dynamic timewarping (DTW) [1] is themost represensaticemethod

to match the time steps of two samples in order to find the best

warping path. Numerous variants of DTWhave been studied, whose

focus is on resolving the inefficiencies in time step matching [15, 17]

and the invalidity of the triangle inequality in the learned dis-

tance [4, 11]. However, DTW-based alignment methods fail to deal

with the temporal dependencies because they explicitly match the

time steps.

2.2 Metric Learning
Most time series metric learning algorithms in the literature apply

metric learning to the local distance computed using DTW based

alignment. LDML-DTW [14] and LMNN-DTW [20] first match time

steps by multivariate dynamic time warping (MDTW) [1], and sub-

sequently learn the Mahalanobis matrix of the local distance using

LogDet divergence and LargeMarginNearest Neighbor (LMNN) [23],

respectively. DECADE [3] devised a new alignment method to learn

the valid distance measure while using deep networks to capture

the complex dependencies in the local distance. There have been

a few studies for learning the distance representation in the em-

bedded space obtained from the last hidden layer of LSTM [16].
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Figure 3: Stream kNN settings.
However, to the best of our knowledge, no studies yet simultane-

ously consider alignment and temporal dependencies in time series

metric learning.

3 PRELIMINARY
3.1 Problem Setting
We introduce the main concepts in the kNN classification prob-

lem on streaming time series in the following definitions, as also

illustrated in Figure 3.

Definition 3.1. (Streaming time series) A multivariate stream-
ing time series x = [x1,x2, · · · ,xT] is a sequential observation of

xi ∈ R
d
with d features, where T is the length of x .

Definition 3.2. (State) A state sj ∈ {1, 2, · · · , S } denotes the label
of a sequence in a time series x during the time period Tj (⊂ T),
where S is the number of states in x and j is the index of the

state. The time series x consists of various sizes of sequences with

different states; for example, a time series x collected from wearable

devices for 15 min consists of the two sequences: a "walk" state of

the first 10 min and a "run" state of the last 5 min.

Definition 3.3. (Sample) A sample Xt = [xt , · · · ,xt+w−1] ∈

Rd×w is a subsequence of sizew extracted from a certain sequence

in time period Tj of a time series x . It consists of the consecutive
time steps from time t to time t +w −1. The state sj of the sequence
becomes the label yt of Xt .

Definition 3.4. (kNN classification problem) Let D be a set

of samples from a time series x . The kNN classification problem

in streaming time series classifies the label of a sample Xnew by

referring to that of the k nearest neighbors of Xnew in D.

3.2 Large Margin Nearest Neighbor [23]
Most metric learning methods aim at learning a Mahalanobis dis-

tance matrixM [5, 23], where the distance is defined as:

DM (Xi , X j ) = (Xi − X j )
TM(Xi − X j ), (1)

where Xi and X j ∈ R
dw

are two samples and M ∈ Rdw×dw is a

positive semidefinite matrix. Given a set of samplesD, for each sam-

ple Xi ∈ D, LMNN first finds the k nearest neighbors of Xi based
on the Euclidean distance and calls them target neighbors. Subse-
quently, LMNN learns the optimal Mahalanobis distance matrix M
which minimizes the following loss function:

min

M⪰0
Elmnn (M) = (1 − c )

∑
i j

ηi jDM (Xi , X j )

+ c
∑
i jl

ηi j (1 − yil )
[
1 + DM (Xi , X j ) + DM (Xi , Xl )

]
+
,

(2)

where c ∈ [0, 1] controls the weights of the two penalizing

terms, ηi j ∈ {0, 1} indicates whether X j is a target neighbor of Xi ,
yil ∈ {0, 1} indicates whether Xi and Xl have the same label or not.
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Figure 4: Overall procedure ofMLAT .

Algorithm 1 MLAT

Input: A multivariate streaming time series x ;
Output: The optimal Mahalanobis matrix M ;

1: /* Phase I: sliding window augmentation */

2: X ← Extract augmented samples from x ;
3: /* Phase II: time-invariant metric learning */

4: L← I, M0 ← I, Z0 ← 0, U0 ← 0; /* Initialize parameters. */

5: for k = 1, 2, · · · , K (until convergence) do /* Update parameters. */

6: repeat
7: Calculate ▽Mk+1 ← ∂Elmnn/∂Mk+1 + ρ (Mk+1 − Zk + Uk );
8: Calculate ▽L← 2L × ▽Mk+1

;

9: Update L← (L − α ▽ L) and Mk+1 ← LT L;
10: until Converge;
11: Zk+1

B (m )
i j

←
∑R (m )

l=1 (Mk+1 + Uk )
B (m )
i j,l

/R (m )
;

12: Uk+1 ← Uk + (Mk+1 − Zk+1);
13: return MK

;

Here, the first term penalizes the large distance from each sample

to its k target neighbors, and the second term penalizes the small

distance from each sample to all other samples that do not share

the same label.

4 METHODOLOGY
MLAT consists of two phases: (1) Sliding window augmentation,

and (2) Time-invariant metric learning. Algorithm 1 describes the

overall procedure of MLAT .

4.1 Phase I: Sliding Window Augmentation
Phase I enables metric learning to consider alignment and temporal

dependencies concurrently. Specifically, all possible samples in x
can be extracted by sliding a fixed sized window from the beginning

of x . Some parts of x where the state switches are exempted from

the augmentation. These augmented samples become the training

set for metric learning and help to achieve the alignment effect. As

in Figure 4(a), a sample X has the most well-aligned training sam-

ple Xtarдet (i ) as its neighbor with euclidean distance. Therefore,

MLAT , which is based on LMNN, exploits the well-aligned samples

Xtarдet (i ) as the target neighbor of X if they share the same label

and consequently learns the distance that makes them close as in

Figure 4(b). Temporal dependencies can also be considered because

metric learning is applied on window distance (M ∈ Rdw×dw ).

4.2 Phase II: Time-Invariant Metric Learning
Phase II allows metric learning to capture the time-invariant prop-

erty of the augmented samples, making it more effective for kNN.

4.2.1 Block Toeplitz. As a result of Phase I, the consecutive sam-

ples are mostly overlapped. This leads to the covariance matrix of

augmented samples in the form of Block Toeplitz [8] as stated in

Definition 4.1, which is proven by Theorem 4.2.

Definition 4.1. (Block toeplitz [8]) A dw × dw block toeplitz
matrix A with d × d sub-blocks A(m)

has the following form:

A =



A(0) (A(1) )T (A(2) )T · · · (A(w−1) )T

A(1) A(0) (A(1) )T
. . .

.

.

.

A(2) A(1)
. . . (A(1) )T (A(2) )T

.

.

.
. . . A(1) A(0) (A(1) )T

A(w−1) · · · A(2) A(1) A(0)



, (3)

where the sub-block A(m)
appears w −m times in A and has the

same value at all occurrences.

Theorem 4.2. Let Ds = [X1,X2, · · · ,XL] ∈ R
dw×L be a set of

samples obtained by sliding window augmentation, where Xt ∈ Rdw

and L ≫ w . The covariance matrix Σ ∈ Rdw×dw of Ds is in the form
of Block Toeplitz.

Proof. Ds is represented withw row partitions as follows:

Ds =



x1 x2 x3 · · · xL−w+1
x2 x3 x4 · · · xL−w+2
.
.
.

.

.

.
.
.
.

.

.

.
xw xw+1 xw+2 · · · xL



, (4)

wherexi ∈ R
d
. Sincemost portions in each row partition overlap,

the mean µp ∈ R
d
of each row partition is approximately the

same. Then, by the definition of the covariance matrix, Σ = 1/L ·
(Ds − µ ) (Ds − µ )

T
approximately takes Block Toeplitz form, where

µ = [µp , · · · , µp ]
T · 1TL ∈ R

dw×L
. □

The (i, j )-th element of the covariance matrix corresponds to

the dependency between the i-th and j-th features, and if the ma-

trix is Block Toeplitz, the dependency between the two features is

time-invariant [9]. Note that the time-invariant dependencies of the

augmented samples should be preserved when learning distance.

4.2.2 Time-Invariant Constraints. Here, we first analyze how the

Mahalanobis matrix handles the dependency between two features.

Eq. (1) can be represented as follows:

DM (Xi , X j ) = tr (M(X1 − X2)
T (X1 − X2))

=
∑
i j

Mi j (X
(i )
1
− X (i )

2
) (X (j )

1
− X (j )

2
), (5)

where X
(i )
1
, i ∈ {1, · · · ,dw }, is the i-th feature scala value of a

sample X1, andMi j is the (i, j )-th element ofM.Mi j decides how

much the product of the distance between i-th features and that of

j-th features affects the total distance, meaning that Mi j handles

the dependency between the i-th and j-th features.

To preserve the time-invariant dependencies, we propose the

following time-invariant metric learning framework:

min

M
Elmnn (M)

subject to : M ⪰ 0, M ∈ T ,
(6)

where T is a set of dw × dw symmetric Block Toeplitz matrices.

By constraining M to be Block Toeplitz, the distances between two
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Table 1: Summary statistics of the UCI dataset.
Data Set Description Dims # Lables

SCMA [7] 3D wearable accelerometer sensors 3 7

AReM [21] Wireless Sensor Network 6 6

EMG [18] Eight Electromyogram(EMG) sensors 8 5

Vicon [19] Nine Vicon 3D trackers 27 5

features in the same time difference should be regarded equally, with

the same values as inM. Thus, the optimal matrix can effectively

capture the time-invariant dependencies structure.

4.2.3 Optimization. We solve the proposed optimization problem

using the alternating direction method of multipliers (ADMM) [2].

We transform Eq. (6) into an ADMM-friendly form as follows:

Lρ (M,Z, U) = Elmnn (M) +
ρ
2

∥ M − Z + U ∥2F
subject to : Z ∈ T , Z = M, M ⪰ 0.

(7)

Then, the following three steps are repeated until convergence.

(a) Mk+1 = arдmin
M

Lρ (M, Zk , Uk )

(b ) Zk+1 = arдmin
Z

Lρ (Mk+1, Z, Uk )

(c ) Uk+1 = Uk + (Mk+1 − Zk+1).

(8)

M-update: The M-update can be written as:

Mk+1 = arдmin
M⪰0

Elmnn (M) +
ρ
2

∥ M − Zk + Uk ∥2F . (9)

This problem can be solved by the gradient descent method. To

ensure a positive semi-definite M, MLAT factorizes M as M = LT L
and updates L through sub-gradient descent. Here, the sub-gradient

of Eq. (9) with respect to L is
∂Elmnn

∂L = 2L( ∂E
lmnn

∂M + ρ (M − Zk +
Uk )) by the chain rule.

Z-update: The closed form solution of the Z-update is as follows:

Zk+1
B (m )
i j

=

R (m )∑
l=1

(Mk+1 + Uk )
B (m )
i j,l

/R (m ), (10)

where B
(m)
i j,l is the index (x ,y) at Z of the (i, j )-th element of the l-th

occurrence sub-matrix Z(m)
, and R (m)

is the number of occurrences

of Z(m)
in Z. Refer to [9] for details.

5 EXPERIMENTS
To validate the superiority of MLAT , we performed the kNN classi-

fication task on four real-world streaming time series data sets. The

experimental results confirmed thatMLAT maintains its dominance

over other algorithms.

5.1 Experiment Setup
5.1.1 Data Sets. The statistics of the four benchmark data sets are

summarized in Table 1. Note that we only used 5 ambiguous labels

defined as normal activities in EMG and Vicon data sets for a more

difficult kNN task.

5.1.2 Algorithms. We compared MLAT with four existing algo-

rithms for measuring distance in time series:

• ED : Euclidean distance (baseline).

• MDTW[1] : Multivariate dynamic time warping.

Table 2: Accuracy (%) of kNNwith standard deviation (k = 1).
Data Set ED DTW LDMLT LMNN MLAT

SCMA 97.5±0.6 98.5±0.5 97.4±0.5 99.1±0.4 99.5±0.1
AReM 75.3±1.2 76.4±1.9 84.4±2.1 73.3±1.5 80.8±0.8

EMG 61.8±2.3 65.4±1.5 65.2±2.8 65.9±2.1 69.3±1.7
Vicon 73.3±1.9 75.8±2.1 72.2±3.3 81.5±2.6 84.9±1.8

Table 3: Accuracy improvement (%) on augmented samples.
Data Set ED DTW LDMLT LMNN

SCMA 1.02 0.40 1.33 0.20

AReM -0.21 0.52 1.30 0.41

EMG 5.34 3.52 -1.4 2.43

Vicon 3.27 -0.13 -2.2 2.33

• LDMLT [14] : Learning local distance by DTW alignment.

• LMNN [13] : Large Margin Nearest Neighbor.

• MLAT : Our proposed method.

5.1.3 Settings. We assumed that 510 consecutive observations (|Tj |
= 510) from each label are given for each data set, except AReM

where |Tj | is 480. The training samples, where the sizew is set to 10,

were extracted from the given observations. For existing algorithms,

we randomly extracted 100 samples from each label. We set k to

1 for kNN because 1-NN is widely accepted as the most accurate

for many tasks [6]. We randomly selected the starting time of the

consecutive observations and reported the average results of the

five experiments for each dataset.

5.2 Experimental Results
5.2.1 Overall Accuracy. Table 2 shows the kNN accuracy of the

five algorithms. In the SCMA, EMG, and Vicon data sets, MLAT
achieved the highest accuracy compared with other algorithms.

LDMLT produced the highest accuracy for the AReM data set, but

MLAT also achieved a significant improvement compared with the

remaining algorithms. This emphasizes the need to consider both

alignment and temporal dependencies.

5.2.2 Effect of Phases I and II. All the existing algorithms were also

evaluated on augmented samples obtained in Phase I. As shown in

Table 3, the accuracy of the algorithms were significantly improved

by up to 5.3% compared with the accuracy from randomly extracted

samples. This shows that augmenting well-aligned samples is evi-

dently beneficial for the time series classification.

In addition, MLAT still outperformed LMNN by up to 9.8%,

though LMNN performed on augmented samples. The performance

of metric learning for time series can thus be further boosted by

preserving the time-invariant characteristic.

6 CONCLUSION
In this paper, we proposed MLAT , a novel metric learning algo-

rithm that considers the two main characteristics in time series,

i.e., variation and temporal dependencies, by using sliding window

augmentation and time-invariant metric learning, respectively. Us-

ing four real-world data sets, we showed that MLAT outperforms

the existing algorithms in most cases. For future work, we will

tackle more challenging settings where more complex variations

and temporal dependencies exist.
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