Held in conjunction with KDD'19
Aug 5, 2019 - Anchorage, Alaska, USA
5th Workshop on
Mining and Learning from Time Series


Time series data are ubiquitous. In domains as diverse as finance, entertainment, transportation and health care, we observe a fundamental shift away from parsimonious, infrequent measurement to nearly continuous monitoring and recording. Rapid advances in diverse sensing technologies, ranging from remote sensors to wearables and social sensing, are generating a rapid growth in the size and complexity of time series archives. Thus, although time series analysis has been studied extensively, its importance only continues to grow. What is more, modern time series data pose significant challenges to existing techniques (e.g., irregular sampling in hospital records and spatiotemporal structure in climate data). Finally, time series mining research is challenging and rewarding because it bridges a variety of disciplines and demands interdisciplinary solutions. Now is the time to discuss the next generation of temporal mining algorithms. The focus of MiLeTS workshop is to synergize the research in this area and discuss both new and open problems in time series analysis and mining. The solutions to these problems may be algorithmic, theoretical, statistical, or systems-based in nature. Further, MiLeTS emphasizes applications to high impact or relatively new domains, including but not limited to biology, health and medicine, climate and weather, road traffic, astronomy, and energy.
The MiLeTS workshop will discuss a broad variety of topics related to time series, including:

  • Time series pattern mining and detection, representation, searching and indexing, classification, clustering, prediction, forecasting, and rule mining.
  • BIG time series data.
  • Hardware acceleration techniques using GPUs, FPGAs and special processors.
  • Online, high-speed learning and mining from streaming time series.
  • Uncertain time series mining.
  • Privacy preserving time series mining and learning.
  • Time series that are multivariate, high-dimensional, heterogeneous, etc., or that possess other atypical properties.
  • Time series with special structure: spatiotemporal (e.g., wind patterns at different locations), relational (e.g., patients with similar diseases), hierarchical, etc.
  • Time series with sparse or irregular sampling, non-random missing values, and special types of measurement noise or bias.
  • Time series analysis using less traditional approaches, such as deep learning and subspace clustering.
  • Applications to high impact or relatively new time series domains, such as health and medicine, road traffic, and air quality.
  • New, open, or unsolved problems in time series analysis and mining.


Jure Leskovec

Jure Leskovec

Associate Professor
Stanford University

Jure Leskovec is Associate Professor of Computer Science at Stanford University, Chief Scientist at Pinterest, and investigator at Chan Zuckerberg Biohub. His research focuses on machine learning and data mining applied to social, information and biological networks, their evolution, and the diffusion of information and influence over them. Computation over massive data is at the heart of his research and has applications in computer science, social sciences, economics, marketing, and healthcare. This research has won several awards including a Lagrange Prize, Microsoft Research Faculty Fellowship, the Alfred P. Sloan Fellowship, and numerous best paper awards. Leskovec received his bachelor's degree in computer science from University of Ljubljana, Slovenia, and his PhD in in machine learning from the Carnegie Mellon University and postdoctoral training at Cornell University.

Jieping Ye

Jieping Ye

Vice President
Didi Chuxing

Jieping Ye is head of Didi AI Labs, a VP of Didi Chuxing and a Didi Fellow. He is also an associate professor of University of Michigan, Ann Arbor. His research interests include big data, machine learning, and data mining with applications in transportation and biomedicine. He has served as a Senior Program Committee/Area Chair/Program Committee Vice Chair of many conferences including NIPS, ICML, KDD, IJCAI, ICDM, and SDM. He serves as an Associate Editor of Data Mining and Knowledge Discovery, IEEE Transactions on Knowledge and Data Engineering, and IEEE Transactions on Pattern Analysis and Machine Intelligence. He won the NSF CAREER Award in 2010. His papers have been selected for the outstanding student paper at ICML in 2004, the KDD best research paper runner up in 2013, and the KDD best student paper award in 2014.

Emily Fox

Emily Fox

Associate Professor
University of Washington

Emily Fox is an Associate Professor in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington, and is the Amazon Professor of Machine Learning. She received an S.B. in 2004 and Ph.D. in 2009 from the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT). She has been awarded a Presidential Early Career Award for Scientists and Engineers (PECASE, 2017), Sloan Research Fellowship (2015), ONR Young Investigator award (2015), NSF CAREER award (2014), National Defense Science and Engineering Graduate (NDSEG) Fellowship, NSF Graduate Research Fellowship, NSF Mathematical Sciences Postdoctoral Research Fellowship, Leonard J. Savage Thesis Award in Applied Methodology (2009), and MIT EECS Jin-Au Kong Outstanding Doctoral Thesis Prize (2009). Her research interests are in large-scale Bayesian dynamic modeling and computations.

More keynote speakers will be announced ...

Call for Papers

Submissions should follow the SIGKDD formatting requirements and will be evaluated using the SIGKDD Research Track evaluation criteria. Preference will be given to papers that are reproducible, and authors are encouraged to share their data and code publicly whenever possible. Submissions are strongly recommended to be no more than 4 pages, excluding references or supplementary materials (all in a single pdf). The appropriateness of using additional pages over the recommended length will be judged by reviewers. All submissions must be in pdf format using the workshop template ( latex, word). Submissions will be managed via the MiLeTS 2019 EasyChair website.

Note on open problem submissions: In order to promote new and innovative research on time series, we plan to accept a small number of high quality manuscripts describing open problems in time series analysis and mining. Such papers should provide a clear, detailed description and analysis of a new or open problem that poses a significant challenge to existing techniques, as well as a thorough empirical investigation demonstrating that current methods are insufficient.

The review process is single-round and double-blind (submission files have to be anonymized). Concurrent submissions to other journals and conferences are acceptable. Accepted papers will be presented as posters during the workshop and list on the website. Besides, a small number of accepted papers will be selected to be presented as contributed talks.

Any questions may be directed to the workshop e-mail address: kdd.milets@gmail.com.

Key Dates


Paper Submission Deadline: May 5th, 2019 May 12th, 2019 11:59PM Alofi Time

Author Notification: June 1st, 2019

Camera Ready Version: June 22nd, 2019

Workshop: August 5th, 2019

Workshop Organizers


Zheng Wang

DiDi Labs


Sanjay Purushotham

University of Maryland, Baltimore County


Yaguang Li

University of Southern California

Steering Committee


Eamonn Keogh

University of California Riverside


Yan Liu

University of Southern California


Abdullah Mueen

University of New Mexico